update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- wer
|
7 |
+
model-index:
|
8 |
+
- name: wav2vec2-ljspeech-gruut
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# wav2vec2-ljspeech-gruut
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the None dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.0683
|
20 |
+
- Wer: 0.0099
|
21 |
+
- Cer: 0.0058
|
22 |
+
|
23 |
+
## Model description
|
24 |
+
|
25 |
+
More information needed
|
26 |
+
|
27 |
+
## Intended uses & limitations
|
28 |
+
|
29 |
+
More information needed
|
30 |
+
|
31 |
+
## Training and evaluation data
|
32 |
+
|
33 |
+
More information needed
|
34 |
+
|
35 |
+
## Training procedure
|
36 |
+
|
37 |
+
### Training hyperparameters
|
38 |
+
|
39 |
+
The following hyperparameters were used during training:
|
40 |
+
- learning_rate: 0.0001
|
41 |
+
- train_batch_size: 16
|
42 |
+
- eval_batch_size: 8
|
43 |
+
- seed: 42
|
44 |
+
- gradient_accumulation_steps: 2
|
45 |
+
- total_train_batch_size: 32
|
46 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
47 |
+
- lr_scheduler_type: linear
|
48 |
+
- lr_scheduler_warmup_steps: 1000
|
49 |
+
- num_epochs: 30.0
|
50 |
+
- mixed_precision_training: Native AMP
|
51 |
+
|
52 |
+
### Training results
|
53 |
+
|
54 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer | Cer |
|
55 |
+
|:-------------:|:-----:|:-----:|:---------------:|:------:|:------:|
|
56 |
+
| No log | 1.0 | 348 | 2.2818 | 1.0 | 1.0 |
|
57 |
+
| 2.6692 | 2.0 | 696 | 0.2045 | 0.0527 | 0.0299 |
|
58 |
+
| 0.2225 | 3.0 | 1044 | 0.1162 | 0.0319 | 0.0189 |
|
59 |
+
| 0.2225 | 4.0 | 1392 | 0.0927 | 0.0235 | 0.0147 |
|
60 |
+
| 0.0868 | 5.0 | 1740 | 0.0797 | 0.0218 | 0.0143 |
|
61 |
+
| 0.0598 | 6.0 | 2088 | 0.0715 | 0.0197 | 0.0128 |
|
62 |
+
| 0.0598 | 7.0 | 2436 | 0.0652 | 0.0160 | 0.0103 |
|
63 |
+
| 0.0447 | 8.0 | 2784 | 0.0571 | 0.0152 | 0.0095 |
|
64 |
+
| 0.0368 | 9.0 | 3132 | 0.0608 | 0.0163 | 0.0112 |
|
65 |
+
| 0.0368 | 10.0 | 3480 | 0.0586 | 0.0137 | 0.0083 |
|
66 |
+
| 0.0303 | 11.0 | 3828 | 0.0641 | 0.0141 | 0.0085 |
|
67 |
+
| 0.0273 | 12.0 | 4176 | 0.0656 | 0.0131 | 0.0079 |
|
68 |
+
| 0.0232 | 13.0 | 4524 | 0.0690 | 0.0133 | 0.0082 |
|
69 |
+
| 0.0232 | 14.0 | 4872 | 0.0598 | 0.0128 | 0.0079 |
|
70 |
+
| 0.0189 | 15.0 | 5220 | 0.0671 | 0.0121 | 0.0074 |
|
71 |
+
| 0.017 | 16.0 | 5568 | 0.0654 | 0.0114 | 0.0069 |
|
72 |
+
| 0.017 | 17.0 | 5916 | 0.0751 | 0.0118 | 0.0073 |
|
73 |
+
| 0.0146 | 18.0 | 6264 | 0.0653 | 0.0112 | 0.0068 |
|
74 |
+
| 0.0127 | 19.0 | 6612 | 0.0682 | 0.0112 | 0.0069 |
|
75 |
+
| 0.0127 | 20.0 | 6960 | 0.0678 | 0.0114 | 0.0068 |
|
76 |
+
| 0.0114 | 21.0 | 7308 | 0.0656 | 0.0111 | 0.0066 |
|
77 |
+
| 0.0101 | 22.0 | 7656 | 0.0669 | 0.0109 | 0.0066 |
|
78 |
+
| 0.0092 | 23.0 | 8004 | 0.0677 | 0.0108 | 0.0065 |
|
79 |
+
| 0.0092 | 24.0 | 8352 | 0.0653 | 0.0104 | 0.0063 |
|
80 |
+
| 0.0088 | 25.0 | 8700 | 0.0673 | 0.0102 | 0.0063 |
|
81 |
+
| 0.0074 | 26.0 | 9048 | 0.0669 | 0.0105 | 0.0064 |
|
82 |
+
| 0.0074 | 27.0 | 9396 | 0.0707 | 0.0101 | 0.0061 |
|
83 |
+
| 0.0066 | 28.0 | 9744 | 0.0673 | 0.0100 | 0.0060 |
|
84 |
+
| 0.0058 | 29.0 | 10092 | 0.0689 | 0.0100 | 0.0059 |
|
85 |
+
| 0.0058 | 30.0 | 10440 | 0.0683 | 0.0099 | 0.0058 |
|
86 |
+
|
87 |
+
|
88 |
+
### Framework versions
|
89 |
+
|
90 |
+
- Transformers 4.26.0.dev0
|
91 |
+
- Pytorch 1.10.0
|
92 |
+
- Datasets 2.7.1
|
93 |
+
- Tokenizers 0.13.2
|