dweb commited on
Commit
a517885
·
verified ·
1 Parent(s): f814955

Add new SentenceTransformer model

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 512,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,2781 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - feature-extraction
5
+ - sentence-similarity
6
+ - mteb
7
+ datasets:
8
+ - jinaai/negation-dataset
9
+ language: en
10
+ inference: false
11
+ license: apache-2.0
12
+ model-index:
13
+ - name: jina-embedding-s-en-v2
14
+ results:
15
+ - task:
16
+ type: Classification
17
+ dataset:
18
+ type: mteb/amazon_counterfactual
19
+ name: MTEB AmazonCounterfactualClassification (en)
20
+ config: en
21
+ split: test
22
+ revision: e8379541af4e31359cca9fbcf4b00f2671dba205
23
+ metrics:
24
+ - type: accuracy
25
+ value: 71.35820895522387
26
+ - type: ap
27
+ value: 33.99931933598115
28
+ - type: f1
29
+ value: 65.3853685535555
30
+ - task:
31
+ type: Classification
32
+ dataset:
33
+ type: mteb/amazon_polarity
34
+ name: MTEB AmazonPolarityClassification
35
+ config: default
36
+ split: test
37
+ revision: e2d317d38cd51312af73b3d32a06d1a08b442046
38
+ metrics:
39
+ - type: accuracy
40
+ value: 82.90140000000001
41
+ - type: ap
42
+ value: 78.01434597815617
43
+ - type: f1
44
+ value: 82.83357802722676
45
+ - task:
46
+ type: Classification
47
+ dataset:
48
+ type: mteb/amazon_reviews_multi
49
+ name: MTEB AmazonReviewsClassification (en)
50
+ config: en
51
+ split: test
52
+ revision: 1399c76144fd37290681b995c656ef9b2e06e26d
53
+ metrics:
54
+ - type: accuracy
55
+ value: 40.88999999999999
56
+ - type: f1
57
+ value: 39.209432767163456
58
+ - task:
59
+ type: Retrieval
60
+ dataset:
61
+ type: arguana
62
+ name: MTEB ArguAna
63
+ config: default
64
+ split: test
65
+ revision: None
66
+ metrics:
67
+ - type: map_at_1
68
+ value: 23.257
69
+ - type: map_at_10
70
+ value: 37.946000000000005
71
+ - type: map_at_100
72
+ value: 39.17
73
+ - type: map_at_1000
74
+ value: 39.181
75
+ - type: map_at_3
76
+ value: 32.99
77
+ - type: map_at_5
78
+ value: 35.467999999999996
79
+ - type: mrr_at_1
80
+ value: 23.541999999999998
81
+ - type: mrr_at_10
82
+ value: 38.057
83
+ - type: mrr_at_100
84
+ value: 39.289
85
+ - type: mrr_at_1000
86
+ value: 39.299
87
+ - type: mrr_at_3
88
+ value: 33.096
89
+ - type: mrr_at_5
90
+ value: 35.628
91
+ - type: ndcg_at_1
92
+ value: 23.257
93
+ - type: ndcg_at_10
94
+ value: 46.729
95
+ - type: ndcg_at_100
96
+ value: 51.900999999999996
97
+ - type: ndcg_at_1000
98
+ value: 52.16
99
+ - type: ndcg_at_3
100
+ value: 36.323
101
+ - type: ndcg_at_5
102
+ value: 40.766999999999996
103
+ - type: precision_at_1
104
+ value: 23.257
105
+ - type: precision_at_10
106
+ value: 7.510999999999999
107
+ - type: precision_at_100
108
+ value: 0.976
109
+ - type: precision_at_1000
110
+ value: 0.1
111
+ - type: precision_at_3
112
+ value: 15.339
113
+ - type: precision_at_5
114
+ value: 11.350999999999999
115
+ - type: recall_at_1
116
+ value: 23.257
117
+ - type: recall_at_10
118
+ value: 75.107
119
+ - type: recall_at_100
120
+ value: 97.58200000000001
121
+ - type: recall_at_1000
122
+ value: 99.57300000000001
123
+ - type: recall_at_3
124
+ value: 46.017
125
+ - type: recall_at_5
126
+ value: 56.757000000000005
127
+ - task:
128
+ type: Clustering
129
+ dataset:
130
+ type: mteb/arxiv-clustering-p2p
131
+ name: MTEB ArxivClusteringP2P
132
+ config: default
133
+ split: test
134
+ revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d
135
+ metrics:
136
+ - type: v_measure
137
+ value: 44.02420878391967
138
+ - task:
139
+ type: Clustering
140
+ dataset:
141
+ type: mteb/arxiv-clustering-s2s
142
+ name: MTEB ArxivClusteringS2S
143
+ config: default
144
+ split: test
145
+ revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53
146
+ metrics:
147
+ - type: v_measure
148
+ value: 35.16136856000258
149
+ - task:
150
+ type: Reranking
151
+ dataset:
152
+ type: mteb/askubuntudupquestions-reranking
153
+ name: MTEB AskUbuntuDupQuestions
154
+ config: default
155
+ split: test
156
+ revision: 2000358ca161889fa9c082cb41daa8dcfb161a54
157
+ metrics:
158
+ - type: map
159
+ value: 59.61809790513646
160
+ - type: mrr
161
+ value: 73.07215406938397
162
+ - task:
163
+ type: STS
164
+ dataset:
165
+ type: mteb/biosses-sts
166
+ name: MTEB BIOSSES
167
+ config: default
168
+ split: test
169
+ revision: d3fb88f8f02e40887cd149695127462bbcf29b4a
170
+ metrics:
171
+ - type: cos_sim_pearson
172
+ value: 82.0167350090749
173
+ - type: cos_sim_spearman
174
+ value: 80.51569002630401
175
+ - type: euclidean_pearson
176
+ value: 81.46820525099726
177
+ - type: euclidean_spearman
178
+ value: 80.51569002630401
179
+ - type: manhattan_pearson
180
+ value: 81.35596555056757
181
+ - type: manhattan_spearman
182
+ value: 80.12592210903303
183
+ - task:
184
+ type: Classification
185
+ dataset:
186
+ type: mteb/banking77
187
+ name: MTEB Banking77Classification
188
+ config: default
189
+ split: test
190
+ revision: 0fd18e25b25c072e09e0d92ab615fda904d66300
191
+ metrics:
192
+ - type: accuracy
193
+ value: 78.25
194
+ - type: f1
195
+ value: 77.34950913540605
196
+ - task:
197
+ type: Clustering
198
+ dataset:
199
+ type: mteb/biorxiv-clustering-p2p
200
+ name: MTEB BiorxivClusteringP2P
201
+ config: default
202
+ split: test
203
+ revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40
204
+ metrics:
205
+ - type: v_measure
206
+ value: 35.57238596005698
207
+ - task:
208
+ type: Clustering
209
+ dataset:
210
+ type: mteb/biorxiv-clustering-s2s
211
+ name: MTEB BiorxivClusteringS2S
212
+ config: default
213
+ split: test
214
+ revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908
215
+ metrics:
216
+ - type: v_measure
217
+ value: 29.066444306196683
218
+ - task:
219
+ type: Retrieval
220
+ dataset:
221
+ type: BeIR/cqadupstack
222
+ name: MTEB CQADupstackAndroidRetrieval
223
+ config: default
224
+ split: test
225
+ revision: None
226
+ metrics:
227
+ - type: map_at_1
228
+ value: 31.891000000000002
229
+ - type: map_at_10
230
+ value: 42.772
231
+ - type: map_at_100
232
+ value: 44.108999999999995
233
+ - type: map_at_1000
234
+ value: 44.236
235
+ - type: map_at_3
236
+ value: 39.289
237
+ - type: map_at_5
238
+ value: 41.113
239
+ - type: mrr_at_1
240
+ value: 39.342
241
+ - type: mrr_at_10
242
+ value: 48.852000000000004
243
+ - type: mrr_at_100
244
+ value: 49.534
245
+ - type: mrr_at_1000
246
+ value: 49.582
247
+ - type: mrr_at_3
248
+ value: 46.089999999999996
249
+ - type: mrr_at_5
250
+ value: 47.685
251
+ - type: ndcg_at_1
252
+ value: 39.342
253
+ - type: ndcg_at_10
254
+ value: 48.988
255
+ - type: ndcg_at_100
256
+ value: 53.854
257
+ - type: ndcg_at_1000
258
+ value: 55.955
259
+ - type: ndcg_at_3
260
+ value: 43.877
261
+ - type: ndcg_at_5
262
+ value: 46.027
263
+ - type: precision_at_1
264
+ value: 39.342
265
+ - type: precision_at_10
266
+ value: 9.285
267
+ - type: precision_at_100
268
+ value: 1.488
269
+ - type: precision_at_1000
270
+ value: 0.194
271
+ - type: precision_at_3
272
+ value: 20.696
273
+ - type: precision_at_5
274
+ value: 14.878
275
+ - type: recall_at_1
276
+ value: 31.891000000000002
277
+ - type: recall_at_10
278
+ value: 60.608
279
+ - type: recall_at_100
280
+ value: 81.025
281
+ - type: recall_at_1000
282
+ value: 94.883
283
+ - type: recall_at_3
284
+ value: 45.694
285
+ - type: recall_at_5
286
+ value: 51.684
287
+ - task:
288
+ type: Retrieval
289
+ dataset:
290
+ type: BeIR/cqadupstack
291
+ name: MTEB CQADupstackEnglishRetrieval
292
+ config: default
293
+ split: test
294
+ revision: None
295
+ metrics:
296
+ - type: map_at_1
297
+ value: 28.778
298
+ - type: map_at_10
299
+ value: 37.632
300
+ - type: map_at_100
301
+ value: 38.800000000000004
302
+ - type: map_at_1000
303
+ value: 38.934999999999995
304
+ - type: map_at_3
305
+ value: 35.293
306
+ - type: map_at_5
307
+ value: 36.547000000000004
308
+ - type: mrr_at_1
309
+ value: 35.35
310
+ - type: mrr_at_10
311
+ value: 42.936
312
+ - type: mrr_at_100
313
+ value: 43.69
314
+ - type: mrr_at_1000
315
+ value: 43.739
316
+ - type: mrr_at_3
317
+ value: 41.062
318
+ - type: mrr_at_5
319
+ value: 42.097
320
+ - type: ndcg_at_1
321
+ value: 35.35
322
+ - type: ndcg_at_10
323
+ value: 42.528
324
+ - type: ndcg_at_100
325
+ value: 46.983000000000004
326
+ - type: ndcg_at_1000
327
+ value: 49.187999999999995
328
+ - type: ndcg_at_3
329
+ value: 39.271
330
+ - type: ndcg_at_5
331
+ value: 40.654
332
+ - type: precision_at_1
333
+ value: 35.35
334
+ - type: precision_at_10
335
+ value: 7.828
336
+ - type: precision_at_100
337
+ value: 1.3010000000000002
338
+ - type: precision_at_1000
339
+ value: 0.17700000000000002
340
+ - type: precision_at_3
341
+ value: 18.96
342
+ - type: precision_at_5
343
+ value: 13.120999999999999
344
+ - type: recall_at_1
345
+ value: 28.778
346
+ - type: recall_at_10
347
+ value: 50.775000000000006
348
+ - type: recall_at_100
349
+ value: 69.66799999999999
350
+ - type: recall_at_1000
351
+ value: 83.638
352
+ - type: recall_at_3
353
+ value: 40.757
354
+ - type: recall_at_5
355
+ value: 44.86
356
+ - task:
357
+ type: Retrieval
358
+ dataset:
359
+ type: BeIR/cqadupstack
360
+ name: MTEB CQADupstackGamingRetrieval
361
+ config: default
362
+ split: test
363
+ revision: None
364
+ metrics:
365
+ - type: map_at_1
366
+ value: 37.584
367
+ - type: map_at_10
368
+ value: 49.69
369
+ - type: map_at_100
370
+ value: 50.639
371
+ - type: map_at_1000
372
+ value: 50.702999999999996
373
+ - type: map_at_3
374
+ value: 46.61
375
+ - type: map_at_5
376
+ value: 48.486000000000004
377
+ - type: mrr_at_1
378
+ value: 43.009
379
+ - type: mrr_at_10
380
+ value: 52.949999999999996
381
+ - type: mrr_at_100
382
+ value: 53.618
383
+ - type: mrr_at_1000
384
+ value: 53.65299999999999
385
+ - type: mrr_at_3
386
+ value: 50.605999999999995
387
+ - type: mrr_at_5
388
+ value: 52.095
389
+ - type: ndcg_at_1
390
+ value: 43.009
391
+ - type: ndcg_at_10
392
+ value: 55.278000000000006
393
+ - type: ndcg_at_100
394
+ value: 59.134
395
+ - type: ndcg_at_1000
396
+ value: 60.528999999999996
397
+ - type: ndcg_at_3
398
+ value: 50.184
399
+ - type: ndcg_at_5
400
+ value: 52.919000000000004
401
+ - type: precision_at_1
402
+ value: 43.009
403
+ - type: precision_at_10
404
+ value: 8.821
405
+ - type: precision_at_100
406
+ value: 1.161
407
+ - type: precision_at_1000
408
+ value: 0.133
409
+ - type: precision_at_3
410
+ value: 22.424
411
+ - type: precision_at_5
412
+ value: 15.436
413
+ - type: recall_at_1
414
+ value: 37.584
415
+ - type: recall_at_10
416
+ value: 68.514
417
+ - type: recall_at_100
418
+ value: 85.099
419
+ - type: recall_at_1000
420
+ value: 95.123
421
+ - type: recall_at_3
422
+ value: 55.007
423
+ - type: recall_at_5
424
+ value: 61.714999999999996
425
+ - task:
426
+ type: Retrieval
427
+ dataset:
428
+ type: BeIR/cqadupstack
429
+ name: MTEB CQADupstackGisRetrieval
430
+ config: default
431
+ split: test
432
+ revision: None
433
+ metrics:
434
+ - type: map_at_1
435
+ value: 24.7
436
+ - type: map_at_10
437
+ value: 32.804
438
+ - type: map_at_100
439
+ value: 33.738
440
+ - type: map_at_1000
441
+ value: 33.825
442
+ - type: map_at_3
443
+ value: 30.639
444
+ - type: map_at_5
445
+ value: 31.781
446
+ - type: mrr_at_1
447
+ value: 26.328000000000003
448
+ - type: mrr_at_10
449
+ value: 34.679
450
+ - type: mrr_at_100
451
+ value: 35.510000000000005
452
+ - type: mrr_at_1000
453
+ value: 35.577999999999996
454
+ - type: mrr_at_3
455
+ value: 32.58
456
+ - type: mrr_at_5
457
+ value: 33.687
458
+ - type: ndcg_at_1
459
+ value: 26.328000000000003
460
+ - type: ndcg_at_10
461
+ value: 37.313
462
+ - type: ndcg_at_100
463
+ value: 42.004000000000005
464
+ - type: ndcg_at_1000
465
+ value: 44.232
466
+ - type: ndcg_at_3
467
+ value: 33.076
468
+ - type: ndcg_at_5
469
+ value: 34.966
470
+ - type: precision_at_1
471
+ value: 26.328000000000003
472
+ - type: precision_at_10
473
+ value: 5.627
474
+ - type: precision_at_100
475
+ value: 0.8410000000000001
476
+ - type: precision_at_1000
477
+ value: 0.106
478
+ - type: precision_at_3
479
+ value: 14.011000000000001
480
+ - type: precision_at_5
481
+ value: 9.582
482
+ - type: recall_at_1
483
+ value: 24.7
484
+ - type: recall_at_10
485
+ value: 49.324
486
+ - type: recall_at_100
487
+ value: 71.018
488
+ - type: recall_at_1000
489
+ value: 87.905
490
+ - type: recall_at_3
491
+ value: 37.7
492
+ - type: recall_at_5
493
+ value: 42.281
494
+ - task:
495
+ type: Retrieval
496
+ dataset:
497
+ type: BeIR/cqadupstack
498
+ name: MTEB CQADupstackMathematicaRetrieval
499
+ config: default
500
+ split: test
501
+ revision: None
502
+ metrics:
503
+ - type: map_at_1
504
+ value: 14.350999999999999
505
+ - type: map_at_10
506
+ value: 21.745
507
+ - type: map_at_100
508
+ value: 22.731
509
+ - type: map_at_1000
510
+ value: 22.852
511
+ - type: map_at_3
512
+ value: 19.245
513
+ - type: map_at_5
514
+ value: 20.788
515
+ - type: mrr_at_1
516
+ value: 18.159
517
+ - type: mrr_at_10
518
+ value: 25.833000000000002
519
+ - type: mrr_at_100
520
+ value: 26.728
521
+ - type: mrr_at_1000
522
+ value: 26.802
523
+ - type: mrr_at_3
524
+ value: 23.383000000000003
525
+ - type: mrr_at_5
526
+ value: 24.887999999999998
527
+ - type: ndcg_at_1
528
+ value: 18.159
529
+ - type: ndcg_at_10
530
+ value: 26.518000000000004
531
+ - type: ndcg_at_100
532
+ value: 31.473000000000003
533
+ - type: ndcg_at_1000
534
+ value: 34.576
535
+ - type: ndcg_at_3
536
+ value: 21.907
537
+ - type: ndcg_at_5
538
+ value: 24.39
539
+ - type: precision_at_1
540
+ value: 18.159
541
+ - type: precision_at_10
542
+ value: 4.938
543
+ - type: precision_at_100
544
+ value: 0.853
545
+ - type: precision_at_1000
546
+ value: 0.125
547
+ - type: precision_at_3
548
+ value: 10.655000000000001
549
+ - type: precision_at_5
550
+ value: 7.985
551
+ - type: recall_at_1
552
+ value: 14.350999999999999
553
+ - type: recall_at_10
554
+ value: 37.284
555
+ - type: recall_at_100
556
+ value: 59.11300000000001
557
+ - type: recall_at_1000
558
+ value: 81.634
559
+ - type: recall_at_3
560
+ value: 24.753
561
+ - type: recall_at_5
562
+ value: 30.979
563
+ - task:
564
+ type: Retrieval
565
+ dataset:
566
+ type: BeIR/cqadupstack
567
+ name: MTEB CQADupstackPhysicsRetrieval
568
+ config: default
569
+ split: test
570
+ revision: None
571
+ metrics:
572
+ - type: map_at_1
573
+ value: 26.978
574
+ - type: map_at_10
575
+ value: 36.276
576
+ - type: map_at_100
577
+ value: 37.547000000000004
578
+ - type: map_at_1000
579
+ value: 37.678
580
+ - type: map_at_3
581
+ value: 33.674
582
+ - type: map_at_5
583
+ value: 35.119
584
+ - type: mrr_at_1
585
+ value: 32.916000000000004
586
+ - type: mrr_at_10
587
+ value: 41.798
588
+ - type: mrr_at_100
589
+ value: 42.72
590
+ - type: mrr_at_1000
591
+ value: 42.778
592
+ - type: mrr_at_3
593
+ value: 39.493
594
+ - type: mrr_at_5
595
+ value: 40.927
596
+ - type: ndcg_at_1
597
+ value: 32.916000000000004
598
+ - type: ndcg_at_10
599
+ value: 41.81
600
+ - type: ndcg_at_100
601
+ value: 47.284
602
+ - type: ndcg_at_1000
603
+ value: 49.702
604
+ - type: ndcg_at_3
605
+ value: 37.486999999999995
606
+ - type: ndcg_at_5
607
+ value: 39.597
608
+ - type: precision_at_1
609
+ value: 32.916000000000004
610
+ - type: precision_at_10
611
+ value: 7.411
612
+ - type: precision_at_100
613
+ value: 1.189
614
+ - type: precision_at_1000
615
+ value: 0.158
616
+ - type: precision_at_3
617
+ value: 17.581
618
+ - type: precision_at_5
619
+ value: 12.397
620
+ - type: recall_at_1
621
+ value: 26.978
622
+ - type: recall_at_10
623
+ value: 52.869
624
+ - type: recall_at_100
625
+ value: 75.78399999999999
626
+ - type: recall_at_1000
627
+ value: 91.545
628
+ - type: recall_at_3
629
+ value: 40.717
630
+ - type: recall_at_5
631
+ value: 46.168
632
+ - task:
633
+ type: Retrieval
634
+ dataset:
635
+ type: BeIR/cqadupstack
636
+ name: MTEB CQADupstackProgrammersRetrieval
637
+ config: default
638
+ split: test
639
+ revision: None
640
+ metrics:
641
+ - type: map_at_1
642
+ value: 24.641
643
+ - type: map_at_10
644
+ value: 32.916000000000004
645
+ - type: map_at_100
646
+ value: 34.165
647
+ - type: map_at_1000
648
+ value: 34.286
649
+ - type: map_at_3
650
+ value: 30.335
651
+ - type: map_at_5
652
+ value: 31.569000000000003
653
+ - type: mrr_at_1
654
+ value: 30.593999999999998
655
+ - type: mrr_at_10
656
+ value: 38.448
657
+ - type: mrr_at_100
658
+ value: 39.299
659
+ - type: mrr_at_1000
660
+ value: 39.362
661
+ - type: mrr_at_3
662
+ value: 36.244
663
+ - type: mrr_at_5
664
+ value: 37.232
665
+ - type: ndcg_at_1
666
+ value: 30.593999999999998
667
+ - type: ndcg_at_10
668
+ value: 38.2
669
+ - type: ndcg_at_100
670
+ value: 43.742
671
+ - type: ndcg_at_1000
672
+ value: 46.217000000000006
673
+ - type: ndcg_at_3
674
+ value: 33.925
675
+ - type: ndcg_at_5
676
+ value: 35.394
677
+ - type: precision_at_1
678
+ value: 30.593999999999998
679
+ - type: precision_at_10
680
+ value: 6.895
681
+ - type: precision_at_100
682
+ value: 1.1320000000000001
683
+ - type: precision_at_1000
684
+ value: 0.153
685
+ - type: precision_at_3
686
+ value: 16.096
687
+ - type: precision_at_5
688
+ value: 11.05
689
+ - type: recall_at_1
690
+ value: 24.641
691
+ - type: recall_at_10
692
+ value: 48.588
693
+ - type: recall_at_100
694
+ value: 72.841
695
+ - type: recall_at_1000
696
+ value: 89.535
697
+ - type: recall_at_3
698
+ value: 36.087
699
+ - type: recall_at_5
700
+ value: 40.346
701
+ - task:
702
+ type: Retrieval
703
+ dataset:
704
+ type: BeIR/cqadupstack
705
+ name: MTEB CQADupstackRetrieval
706
+ config: default
707
+ split: test
708
+ revision: None
709
+ metrics:
710
+ - type: map_at_1
711
+ value: 24.79425
712
+ - type: map_at_10
713
+ value: 33.12033333333333
714
+ - type: map_at_100
715
+ value: 34.221333333333334
716
+ - type: map_at_1000
717
+ value: 34.3435
718
+ - type: map_at_3
719
+ value: 30.636583333333338
720
+ - type: map_at_5
721
+ value: 31.974083333333326
722
+ - type: mrr_at_1
723
+ value: 29.242416666666664
724
+ - type: mrr_at_10
725
+ value: 37.11675
726
+ - type: mrr_at_100
727
+ value: 37.93783333333334
728
+ - type: mrr_at_1000
729
+ value: 38.003083333333336
730
+ - type: mrr_at_3
731
+ value: 34.904666666666664
732
+ - type: mrr_at_5
733
+ value: 36.12916666666667
734
+ - type: ndcg_at_1
735
+ value: 29.242416666666664
736
+ - type: ndcg_at_10
737
+ value: 38.03416666666667
738
+ - type: ndcg_at_100
739
+ value: 42.86674999999999
740
+ - type: ndcg_at_1000
741
+ value: 45.34550000000001
742
+ - type: ndcg_at_3
743
+ value: 33.76466666666666
744
+ - type: ndcg_at_5
745
+ value: 35.668666666666674
746
+ - type: precision_at_1
747
+ value: 29.242416666666664
748
+ - type: precision_at_10
749
+ value: 6.589833333333334
750
+ - type: precision_at_100
751
+ value: 1.0693333333333332
752
+ - type: precision_at_1000
753
+ value: 0.14641666666666667
754
+ - type: precision_at_3
755
+ value: 15.430749999999998
756
+ - type: precision_at_5
757
+ value: 10.833833333333333
758
+ - type: recall_at_1
759
+ value: 24.79425
760
+ - type: recall_at_10
761
+ value: 48.582916666666655
762
+ - type: recall_at_100
763
+ value: 69.88499999999999
764
+ - type: recall_at_1000
765
+ value: 87.211
766
+ - type: recall_at_3
767
+ value: 36.625499999999995
768
+ - type: recall_at_5
769
+ value: 41.553999999999995
770
+ - task:
771
+ type: Retrieval
772
+ dataset:
773
+ type: BeIR/cqadupstack
774
+ name: MTEB CQADupstackStatsRetrieval
775
+ config: default
776
+ split: test
777
+ revision: None
778
+ metrics:
779
+ - type: map_at_1
780
+ value: 22.767
781
+ - type: map_at_10
782
+ value: 28.450999999999997
783
+ - type: map_at_100
784
+ value: 29.332
785
+ - type: map_at_1000
786
+ value: 29.426000000000002
787
+ - type: map_at_3
788
+ value: 26.379
789
+ - type: map_at_5
790
+ value: 27.584999999999997
791
+ - type: mrr_at_1
792
+ value: 25.46
793
+ - type: mrr_at_10
794
+ value: 30.974
795
+ - type: mrr_at_100
796
+ value: 31.784000000000002
797
+ - type: mrr_at_1000
798
+ value: 31.857999999999997
799
+ - type: mrr_at_3
800
+ value: 28.962
801
+ - type: mrr_at_5
802
+ value: 30.066
803
+ - type: ndcg_at_1
804
+ value: 25.46
805
+ - type: ndcg_at_10
806
+ value: 32.041
807
+ - type: ndcg_at_100
808
+ value: 36.522
809
+ - type: ndcg_at_1000
810
+ value: 39.101
811
+ - type: ndcg_at_3
812
+ value: 28.152
813
+ - type: ndcg_at_5
814
+ value: 30.03
815
+ - type: precision_at_1
816
+ value: 25.46
817
+ - type: precision_at_10
818
+ value: 4.893
819
+ - type: precision_at_100
820
+ value: 0.77
821
+ - type: precision_at_1000
822
+ value: 0.107
823
+ - type: precision_at_3
824
+ value: 11.605
825
+ - type: precision_at_5
826
+ value: 8.19
827
+ - type: recall_at_1
828
+ value: 22.767
829
+ - type: recall_at_10
830
+ value: 40.71
831
+ - type: recall_at_100
832
+ value: 61.334999999999994
833
+ - type: recall_at_1000
834
+ value: 80.567
835
+ - type: recall_at_3
836
+ value: 30.198000000000004
837
+ - type: recall_at_5
838
+ value: 34.803
839
+ - task:
840
+ type: Retrieval
841
+ dataset:
842
+ type: BeIR/cqadupstack
843
+ name: MTEB CQADupstackTexRetrieval
844
+ config: default
845
+ split: test
846
+ revision: None
847
+ metrics:
848
+ - type: map_at_1
849
+ value: 16.722
850
+ - type: map_at_10
851
+ value: 22.794
852
+ - type: map_at_100
853
+ value: 23.7
854
+ - type: map_at_1000
855
+ value: 23.822
856
+ - type: map_at_3
857
+ value: 20.781
858
+ - type: map_at_5
859
+ value: 22.024
860
+ - type: mrr_at_1
861
+ value: 20.061999999999998
862
+ - type: mrr_at_10
863
+ value: 26.346999999999998
864
+ - type: mrr_at_100
865
+ value: 27.153
866
+ - type: mrr_at_1000
867
+ value: 27.233
868
+ - type: mrr_at_3
869
+ value: 24.375
870
+ - type: mrr_at_5
871
+ value: 25.593
872
+ - type: ndcg_at_1
873
+ value: 20.061999999999998
874
+ - type: ndcg_at_10
875
+ value: 26.785999999999998
876
+ - type: ndcg_at_100
877
+ value: 31.319999999999997
878
+ - type: ndcg_at_1000
879
+ value: 34.346
880
+ - type: ndcg_at_3
881
+ value: 23.219
882
+ - type: ndcg_at_5
883
+ value: 25.107000000000003
884
+ - type: precision_at_1
885
+ value: 20.061999999999998
886
+ - type: precision_at_10
887
+ value: 4.78
888
+ - type: precision_at_100
889
+ value: 0.83
890
+ - type: precision_at_1000
891
+ value: 0.125
892
+ - type: precision_at_3
893
+ value: 10.874
894
+ - type: precision_at_5
895
+ value: 7.956
896
+ - type: recall_at_1
897
+ value: 16.722
898
+ - type: recall_at_10
899
+ value: 35.204
900
+ - type: recall_at_100
901
+ value: 55.797
902
+ - type: recall_at_1000
903
+ value: 77.689
904
+ - type: recall_at_3
905
+ value: 25.245
906
+ - type: recall_at_5
907
+ value: 30.115
908
+ - task:
909
+ type: Retrieval
910
+ dataset:
911
+ type: BeIR/cqadupstack
912
+ name: MTEB CQADupstackUnixRetrieval
913
+ config: default
914
+ split: test
915
+ revision: None
916
+ metrics:
917
+ - type: map_at_1
918
+ value: 24.842
919
+ - type: map_at_10
920
+ value: 32.917
921
+ - type: map_at_100
922
+ value: 33.961000000000006
923
+ - type: map_at_1000
924
+ value: 34.069
925
+ - type: map_at_3
926
+ value: 30.595
927
+ - type: map_at_5
928
+ value: 31.837
929
+ - type: mrr_at_1
930
+ value: 29.011
931
+ - type: mrr_at_10
932
+ value: 36.977
933
+ - type: mrr_at_100
934
+ value: 37.814
935
+ - type: mrr_at_1000
936
+ value: 37.885999999999996
937
+ - type: mrr_at_3
938
+ value: 34.966
939
+ - type: mrr_at_5
940
+ value: 36.043
941
+ - type: ndcg_at_1
942
+ value: 29.011
943
+ - type: ndcg_at_10
944
+ value: 37.735
945
+ - type: ndcg_at_100
946
+ value: 42.683
947
+ - type: ndcg_at_1000
948
+ value: 45.198
949
+ - type: ndcg_at_3
950
+ value: 33.650000000000006
951
+ - type: ndcg_at_5
952
+ value: 35.386
953
+ - type: precision_at_1
954
+ value: 29.011
955
+ - type: precision_at_10
956
+ value: 6.259
957
+ - type: precision_at_100
958
+ value: 0.984
959
+ - type: precision_at_1000
960
+ value: 0.13
961
+ - type: precision_at_3
962
+ value: 15.329999999999998
963
+ - type: precision_at_5
964
+ value: 10.541
965
+ - type: recall_at_1
966
+ value: 24.842
967
+ - type: recall_at_10
968
+ value: 48.304
969
+ - type: recall_at_100
970
+ value: 70.04899999999999
971
+ - type: recall_at_1000
972
+ value: 87.82600000000001
973
+ - type: recall_at_3
974
+ value: 36.922
975
+ - type: recall_at_5
976
+ value: 41.449999999999996
977
+ - task:
978
+ type: Retrieval
979
+ dataset:
980
+ type: BeIR/cqadupstack
981
+ name: MTEB CQADupstackWebmastersRetrieval
982
+ config: default
983
+ split: test
984
+ revision: None
985
+ metrics:
986
+ - type: map_at_1
987
+ value: 24.252000000000002
988
+ - type: map_at_10
989
+ value: 32.293
990
+ - type: map_at_100
991
+ value: 33.816
992
+ - type: map_at_1000
993
+ value: 34.053
994
+ - type: map_at_3
995
+ value: 29.781999999999996
996
+ - type: map_at_5
997
+ value: 31.008000000000003
998
+ - type: mrr_at_1
999
+ value: 29.051
1000
+ - type: mrr_at_10
1001
+ value: 36.722
1002
+ - type: mrr_at_100
1003
+ value: 37.663000000000004
1004
+ - type: mrr_at_1000
1005
+ value: 37.734
1006
+ - type: mrr_at_3
1007
+ value: 34.354
1008
+ - type: mrr_at_5
1009
+ value: 35.609
1010
+ - type: ndcg_at_1
1011
+ value: 29.051
1012
+ - type: ndcg_at_10
1013
+ value: 37.775999999999996
1014
+ - type: ndcg_at_100
1015
+ value: 43.221
1016
+ - type: ndcg_at_1000
1017
+ value: 46.116
1018
+ - type: ndcg_at_3
1019
+ value: 33.403
1020
+ - type: ndcg_at_5
1021
+ value: 35.118
1022
+ - type: precision_at_1
1023
+ value: 29.051
1024
+ - type: precision_at_10
1025
+ value: 7.332
1026
+ - type: precision_at_100
1027
+ value: 1.49
1028
+ - type: precision_at_1000
1029
+ value: 0.23600000000000002
1030
+ - type: precision_at_3
1031
+ value: 15.415000000000001
1032
+ - type: precision_at_5
1033
+ value: 11.107
1034
+ - type: recall_at_1
1035
+ value: 24.252000000000002
1036
+ - type: recall_at_10
1037
+ value: 47.861
1038
+ - type: recall_at_100
1039
+ value: 72.21600000000001
1040
+ - type: recall_at_1000
1041
+ value: 90.886
1042
+ - type: recall_at_3
1043
+ value: 35.533
1044
+ - type: recall_at_5
1045
+ value: 39.959
1046
+ - task:
1047
+ type: Retrieval
1048
+ dataset:
1049
+ type: BeIR/cqadupstack
1050
+ name: MTEB CQADupstackWordpressRetrieval
1051
+ config: default
1052
+ split: test
1053
+ revision: None
1054
+ metrics:
1055
+ - type: map_at_1
1056
+ value: 20.025000000000002
1057
+ - type: map_at_10
1058
+ value: 27.154
1059
+ - type: map_at_100
1060
+ value: 28.118
1061
+ - type: map_at_1000
1062
+ value: 28.237000000000002
1063
+ - type: map_at_3
1064
+ value: 25.017
1065
+ - type: map_at_5
1066
+ value: 25.832
1067
+ - type: mrr_at_1
1068
+ value: 21.627
1069
+ - type: mrr_at_10
1070
+ value: 28.884999999999998
1071
+ - type: mrr_at_100
1072
+ value: 29.741
1073
+ - type: mrr_at_1000
1074
+ value: 29.831999999999997
1075
+ - type: mrr_at_3
1076
+ value: 26.741
1077
+ - type: mrr_at_5
1078
+ value: 27.628000000000004
1079
+ - type: ndcg_at_1
1080
+ value: 21.627
1081
+ - type: ndcg_at_10
1082
+ value: 31.436999999999998
1083
+ - type: ndcg_at_100
1084
+ value: 36.181000000000004
1085
+ - type: ndcg_at_1000
1086
+ value: 38.986
1087
+ - type: ndcg_at_3
1088
+ value: 27.025
1089
+ - type: ndcg_at_5
1090
+ value: 28.436
1091
+ - type: precision_at_1
1092
+ value: 21.627
1093
+ - type: precision_at_10
1094
+ value: 5.009
1095
+ - type: precision_at_100
1096
+ value: 0.7929999999999999
1097
+ - type: precision_at_1000
1098
+ value: 0.11299999999999999
1099
+ - type: precision_at_3
1100
+ value: 11.522
1101
+ - type: precision_at_5
1102
+ value: 7.763000000000001
1103
+ - type: recall_at_1
1104
+ value: 20.025000000000002
1105
+ - type: recall_at_10
1106
+ value: 42.954
1107
+ - type: recall_at_100
1108
+ value: 64.67500000000001
1109
+ - type: recall_at_1000
1110
+ value: 85.301
1111
+ - type: recall_at_3
1112
+ value: 30.892999999999997
1113
+ - type: recall_at_5
1114
+ value: 34.288000000000004
1115
+ - task:
1116
+ type: Retrieval
1117
+ dataset:
1118
+ type: climate-fever
1119
+ name: MTEB ClimateFEVER
1120
+ config: default
1121
+ split: test
1122
+ revision: None
1123
+ metrics:
1124
+ - type: map_at_1
1125
+ value: 10.079
1126
+ - type: map_at_10
1127
+ value: 16.930999999999997
1128
+ - type: map_at_100
1129
+ value: 18.398999999999997
1130
+ - type: map_at_1000
1131
+ value: 18.561
1132
+ - type: map_at_3
1133
+ value: 14.294
1134
+ - type: map_at_5
1135
+ value: 15.579
1136
+ - type: mrr_at_1
1137
+ value: 22.606
1138
+ - type: mrr_at_10
1139
+ value: 32.513
1140
+ - type: mrr_at_100
1141
+ value: 33.463
1142
+ - type: mrr_at_1000
1143
+ value: 33.513999999999996
1144
+ - type: mrr_at_3
1145
+ value: 29.479
1146
+ - type: mrr_at_5
1147
+ value: 31.3
1148
+ - type: ndcg_at_1
1149
+ value: 22.606
1150
+ - type: ndcg_at_10
1151
+ value: 24.053
1152
+ - type: ndcg_at_100
1153
+ value: 30.258000000000003
1154
+ - type: ndcg_at_1000
1155
+ value: 33.516
1156
+ - type: ndcg_at_3
1157
+ value: 19.721
1158
+ - type: ndcg_at_5
1159
+ value: 21.144
1160
+ - type: precision_at_1
1161
+ value: 22.606
1162
+ - type: precision_at_10
1163
+ value: 7.55
1164
+ - type: precision_at_100
1165
+ value: 1.399
1166
+ - type: precision_at_1000
1167
+ value: 0.2
1168
+ - type: precision_at_3
1169
+ value: 14.701
1170
+ - type: precision_at_5
1171
+ value: 11.192
1172
+ - type: recall_at_1
1173
+ value: 10.079
1174
+ - type: recall_at_10
1175
+ value: 28.970000000000002
1176
+ - type: recall_at_100
1177
+ value: 50.805
1178
+ - type: recall_at_1000
1179
+ value: 69.378
1180
+ - type: recall_at_3
1181
+ value: 18.199
1182
+ - type: recall_at_5
1183
+ value: 22.442
1184
+ - task:
1185
+ type: Retrieval
1186
+ dataset:
1187
+ type: dbpedia-entity
1188
+ name: MTEB DBPedia
1189
+ config: default
1190
+ split: test
1191
+ revision: None
1192
+ metrics:
1193
+ - type: map_at_1
1194
+ value: 7.794
1195
+ - type: map_at_10
1196
+ value: 15.165999999999999
1197
+ - type: map_at_100
1198
+ value: 20.508000000000003
1199
+ - type: map_at_1000
1200
+ value: 21.809
1201
+ - type: map_at_3
1202
+ value: 11.568000000000001
1203
+ - type: map_at_5
1204
+ value: 13.059000000000001
1205
+ - type: mrr_at_1
1206
+ value: 56.49999999999999
1207
+ - type: mrr_at_10
1208
+ value: 65.90899999999999
1209
+ - type: mrr_at_100
1210
+ value: 66.352
1211
+ - type: mrr_at_1000
1212
+ value: 66.369
1213
+ - type: mrr_at_3
1214
+ value: 64.0
1215
+ - type: mrr_at_5
1216
+ value: 65.10000000000001
1217
+ - type: ndcg_at_1
1218
+ value: 44.25
1219
+ - type: ndcg_at_10
1220
+ value: 32.649
1221
+ - type: ndcg_at_100
1222
+ value: 36.668
1223
+ - type: ndcg_at_1000
1224
+ value: 43.918
1225
+ - type: ndcg_at_3
1226
+ value: 37.096000000000004
1227
+ - type: ndcg_at_5
1228
+ value: 34.048
1229
+ - type: precision_at_1
1230
+ value: 56.49999999999999
1231
+ - type: precision_at_10
1232
+ value: 25.45
1233
+ - type: precision_at_100
1234
+ value: 8.055
1235
+ - type: precision_at_1000
1236
+ value: 1.7489999999999999
1237
+ - type: precision_at_3
1238
+ value: 41.0
1239
+ - type: precision_at_5
1240
+ value: 32.85
1241
+ - type: recall_at_1
1242
+ value: 7.794
1243
+ - type: recall_at_10
1244
+ value: 20.101
1245
+ - type: recall_at_100
1246
+ value: 42.448
1247
+ - type: recall_at_1000
1248
+ value: 65.88000000000001
1249
+ - type: recall_at_3
1250
+ value: 12.753
1251
+ - type: recall_at_5
1252
+ value: 15.307
1253
+ - task:
1254
+ type: Classification
1255
+ dataset:
1256
+ type: mteb/emotion
1257
+ name: MTEB EmotionClassification
1258
+ config: default
1259
+ split: test
1260
+ revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37
1261
+ metrics:
1262
+ - type: accuracy
1263
+ value: 44.01
1264
+ - type: f1
1265
+ value: 38.659680951114964
1266
+ - task:
1267
+ type: Retrieval
1268
+ dataset:
1269
+ type: fever
1270
+ name: MTEB FEVER
1271
+ config: default
1272
+ split: test
1273
+ revision: None
1274
+ metrics:
1275
+ - type: map_at_1
1276
+ value: 49.713
1277
+ - type: map_at_10
1278
+ value: 61.79
1279
+ - type: map_at_100
1280
+ value: 62.28
1281
+ - type: map_at_1000
1282
+ value: 62.297000000000004
1283
+ - type: map_at_3
1284
+ value: 59.361
1285
+ - type: map_at_5
1286
+ value: 60.92100000000001
1287
+ - type: mrr_at_1
1288
+ value: 53.405
1289
+ - type: mrr_at_10
1290
+ value: 65.79899999999999
1291
+ - type: mrr_at_100
1292
+ value: 66.219
1293
+ - type: mrr_at_1000
1294
+ value: 66.227
1295
+ - type: mrr_at_3
1296
+ value: 63.431000000000004
1297
+ - type: mrr_at_5
1298
+ value: 64.98
1299
+ - type: ndcg_at_1
1300
+ value: 53.405
1301
+ - type: ndcg_at_10
1302
+ value: 68.01899999999999
1303
+ - type: ndcg_at_100
1304
+ value: 70.197
1305
+ - type: ndcg_at_1000
1306
+ value: 70.571
1307
+ - type: ndcg_at_3
1308
+ value: 63.352
1309
+ - type: ndcg_at_5
1310
+ value: 66.018
1311
+ - type: precision_at_1
1312
+ value: 53.405
1313
+ - type: precision_at_10
1314
+ value: 9.119
1315
+ - type: precision_at_100
1316
+ value: 1.03
1317
+ - type: precision_at_1000
1318
+ value: 0.107
1319
+ - type: precision_at_3
1320
+ value: 25.602999999999998
1321
+ - type: precision_at_5
1322
+ value: 16.835
1323
+ - type: recall_at_1
1324
+ value: 49.713
1325
+ - type: recall_at_10
1326
+ value: 83.306
1327
+ - type: recall_at_100
1328
+ value: 92.92
1329
+ - type: recall_at_1000
1330
+ value: 95.577
1331
+ - type: recall_at_3
1332
+ value: 70.798
1333
+ - type: recall_at_5
1334
+ value: 77.254
1335
+ - task:
1336
+ type: Retrieval
1337
+ dataset:
1338
+ type: fiqa
1339
+ name: MTEB FiQA2018
1340
+ config: default
1341
+ split: test
1342
+ revision: None
1343
+ metrics:
1344
+ - type: map_at_1
1345
+ value: 15.310000000000002
1346
+ - type: map_at_10
1347
+ value: 26.204
1348
+ - type: map_at_100
1349
+ value: 27.932000000000002
1350
+ - type: map_at_1000
1351
+ value: 28.121000000000002
1352
+ - type: map_at_3
1353
+ value: 22.481
1354
+ - type: map_at_5
1355
+ value: 24.678
1356
+ - type: mrr_at_1
1357
+ value: 29.784
1358
+ - type: mrr_at_10
1359
+ value: 39.582
1360
+ - type: mrr_at_100
1361
+ value: 40.52
1362
+ - type: mrr_at_1000
1363
+ value: 40.568
1364
+ - type: mrr_at_3
1365
+ value: 37.114000000000004
1366
+ - type: mrr_at_5
1367
+ value: 38.596000000000004
1368
+ - type: ndcg_at_1
1369
+ value: 29.784
1370
+ - type: ndcg_at_10
1371
+ value: 33.432
1372
+ - type: ndcg_at_100
1373
+ value: 40.281
1374
+ - type: ndcg_at_1000
1375
+ value: 43.653999999999996
1376
+ - type: ndcg_at_3
1377
+ value: 29.612
1378
+ - type: ndcg_at_5
1379
+ value: 31.223
1380
+ - type: precision_at_1
1381
+ value: 29.784
1382
+ - type: precision_at_10
1383
+ value: 9.645
1384
+ - type: precision_at_100
1385
+ value: 1.645
1386
+ - type: precision_at_1000
1387
+ value: 0.22499999999999998
1388
+ - type: precision_at_3
1389
+ value: 20.165
1390
+ - type: precision_at_5
1391
+ value: 15.401000000000002
1392
+ - type: recall_at_1
1393
+ value: 15.310000000000002
1394
+ - type: recall_at_10
1395
+ value: 40.499
1396
+ - type: recall_at_100
1397
+ value: 66.643
1398
+ - type: recall_at_1000
1399
+ value: 87.059
1400
+ - type: recall_at_3
1401
+ value: 27.492
1402
+ - type: recall_at_5
1403
+ value: 33.748
1404
+ - task:
1405
+ type: Retrieval
1406
+ dataset:
1407
+ type: hotpotqa
1408
+ name: MTEB HotpotQA
1409
+ config: default
1410
+ split: test
1411
+ revision: None
1412
+ metrics:
1413
+ - type: map_at_1
1414
+ value: 33.599000000000004
1415
+ - type: map_at_10
1416
+ value: 47.347
1417
+ - type: map_at_100
1418
+ value: 48.191
1419
+ - type: map_at_1000
1420
+ value: 48.263
1421
+ - type: map_at_3
1422
+ value: 44.698
1423
+ - type: map_at_5
1424
+ value: 46.278999999999996
1425
+ - type: mrr_at_1
1426
+ value: 67.19800000000001
1427
+ - type: mrr_at_10
1428
+ value: 74.054
1429
+ - type: mrr_at_100
1430
+ value: 74.376
1431
+ - type: mrr_at_1000
1432
+ value: 74.392
1433
+ - type: mrr_at_3
1434
+ value: 72.849
1435
+ - type: mrr_at_5
1436
+ value: 73.643
1437
+ - type: ndcg_at_1
1438
+ value: 67.19800000000001
1439
+ - type: ndcg_at_10
1440
+ value: 56.482
1441
+ - type: ndcg_at_100
1442
+ value: 59.694
1443
+ - type: ndcg_at_1000
1444
+ value: 61.204
1445
+ - type: ndcg_at_3
1446
+ value: 52.43299999999999
1447
+ - type: ndcg_at_5
1448
+ value: 54.608000000000004
1449
+ - type: precision_at_1
1450
+ value: 67.19800000000001
1451
+ - type: precision_at_10
1452
+ value: 11.613999999999999
1453
+ - type: precision_at_100
1454
+ value: 1.415
1455
+ - type: precision_at_1000
1456
+ value: 0.16199999999999998
1457
+ - type: precision_at_3
1458
+ value: 32.726
1459
+ - type: precision_at_5
1460
+ value: 21.349999999999998
1461
+ - type: recall_at_1
1462
+ value: 33.599000000000004
1463
+ - type: recall_at_10
1464
+ value: 58.069
1465
+ - type: recall_at_100
1466
+ value: 70.736
1467
+ - type: recall_at_1000
1468
+ value: 80.804
1469
+ - type: recall_at_3
1470
+ value: 49.088
1471
+ - type: recall_at_5
1472
+ value: 53.376000000000005
1473
+ - task:
1474
+ type: Classification
1475
+ dataset:
1476
+ type: mteb/imdb
1477
+ name: MTEB ImdbClassification
1478
+ config: default
1479
+ split: test
1480
+ revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7
1481
+ metrics:
1482
+ - type: accuracy
1483
+ value: 73.64359999999999
1484
+ - type: ap
1485
+ value: 67.54685976014599
1486
+ - type: f1
1487
+ value: 73.55148707559482
1488
+ - task:
1489
+ type: Retrieval
1490
+ dataset:
1491
+ type: msmarco
1492
+ name: MTEB MSMARCO
1493
+ config: default
1494
+ split: dev
1495
+ revision: None
1496
+ metrics:
1497
+ - type: map_at_1
1498
+ value: 19.502
1499
+ - type: map_at_10
1500
+ value: 30.816
1501
+ - type: map_at_100
1502
+ value: 32.007999999999996
1503
+ - type: map_at_1000
1504
+ value: 32.067
1505
+ - type: map_at_3
1506
+ value: 27.215
1507
+ - type: map_at_5
1508
+ value: 29.304000000000002
1509
+ - type: mrr_at_1
1510
+ value: 20.072000000000003
1511
+ - type: mrr_at_10
1512
+ value: 31.406
1513
+ - type: mrr_at_100
1514
+ value: 32.549
1515
+ - type: mrr_at_1000
1516
+ value: 32.602
1517
+ - type: mrr_at_3
1518
+ value: 27.839000000000002
1519
+ - type: mrr_at_5
1520
+ value: 29.926000000000002
1521
+ - type: ndcg_at_1
1522
+ value: 20.086000000000002
1523
+ - type: ndcg_at_10
1524
+ value: 37.282
1525
+ - type: ndcg_at_100
1526
+ value: 43.206
1527
+ - type: ndcg_at_1000
1528
+ value: 44.690000000000005
1529
+ - type: ndcg_at_3
1530
+ value: 29.932
1531
+ - type: ndcg_at_5
1532
+ value: 33.668
1533
+ - type: precision_at_1
1534
+ value: 20.086000000000002
1535
+ - type: precision_at_10
1536
+ value: 5.961
1537
+ - type: precision_at_100
1538
+ value: 0.898
1539
+ - type: precision_at_1000
1540
+ value: 0.10200000000000001
1541
+ - type: precision_at_3
1542
+ value: 12.856000000000002
1543
+ - type: precision_at_5
1544
+ value: 9.596
1545
+ - type: recall_at_1
1546
+ value: 19.502
1547
+ - type: recall_at_10
1548
+ value: 57.182
1549
+ - type: recall_at_100
1550
+ value: 84.952
1551
+ - type: recall_at_1000
1552
+ value: 96.34700000000001
1553
+ - type: recall_at_3
1554
+ value: 37.193
1555
+ - type: recall_at_5
1556
+ value: 46.157
1557
+ - task:
1558
+ type: Classification
1559
+ dataset:
1560
+ type: mteb/mtop_domain
1561
+ name: MTEB MTOPDomainClassification (en)
1562
+ config: en
1563
+ split: test
1564
+ revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf
1565
+ metrics:
1566
+ - type: accuracy
1567
+ value: 93.96488828089375
1568
+ - type: f1
1569
+ value: 93.32119260543482
1570
+ - task:
1571
+ type: Classification
1572
+ dataset:
1573
+ type: mteb/mtop_intent
1574
+ name: MTEB MTOPIntentClassification (en)
1575
+ config: en
1576
+ split: test
1577
+ revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba
1578
+ metrics:
1579
+ - type: accuracy
1580
+ value: 72.4965800273598
1581
+ - type: f1
1582
+ value: 49.34896217536082
1583
+ - task:
1584
+ type: Classification
1585
+ dataset:
1586
+ type: mteb/amazon_massive_intent
1587
+ name: MTEB MassiveIntentClassification (en)
1588
+ config: en
1589
+ split: test
1590
+ revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7
1591
+ metrics:
1592
+ - type: accuracy
1593
+ value: 67.60928043039678
1594
+ - type: f1
1595
+ value: 64.34244712074538
1596
+ - task:
1597
+ type: Classification
1598
+ dataset:
1599
+ type: mteb/amazon_massive_scenario
1600
+ name: MTEB MassiveScenarioClassification (en)
1601
+ config: en
1602
+ split: test
1603
+ revision: 7d571f92784cd94a019292a1f45445077d0ef634
1604
+ metrics:
1605
+ - type: accuracy
1606
+ value: 69.75453934095493
1607
+ - type: f1
1608
+ value: 68.39224867489249
1609
+ - task:
1610
+ type: Clustering
1611
+ dataset:
1612
+ type: mteb/medrxiv-clustering-p2p
1613
+ name: MTEB MedrxivClusteringP2P
1614
+ config: default
1615
+ split: test
1616
+ revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73
1617
+ metrics:
1618
+ - type: v_measure
1619
+ value: 31.862573504920082
1620
+ - task:
1621
+ type: Clustering
1622
+ dataset:
1623
+ type: mteb/medrxiv-clustering-s2s
1624
+ name: MTEB MedrxivClusteringS2S
1625
+ config: default
1626
+ split: test
1627
+ revision: 35191c8c0dca72d8ff3efcd72aa802307d469663
1628
+ metrics:
1629
+ - type: v_measure
1630
+ value: 27.511123551196803
1631
+ - task:
1632
+ type: Reranking
1633
+ dataset:
1634
+ type: mteb/mind_small
1635
+ name: MTEB MindSmallReranking
1636
+ config: default
1637
+ split: test
1638
+ revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69
1639
+ metrics:
1640
+ - type: map
1641
+ value: 30.99145104942086
1642
+ - type: mrr
1643
+ value: 32.03606480418627
1644
+ - task:
1645
+ type: Retrieval
1646
+ dataset:
1647
+ type: nfcorpus
1648
+ name: MTEB NFCorpus
1649
+ config: default
1650
+ split: test
1651
+ revision: None
1652
+ metrics:
1653
+ - type: map_at_1
1654
+ value: 5.015
1655
+ - type: map_at_10
1656
+ value: 11.054
1657
+ - type: map_at_100
1658
+ value: 13.773
1659
+ - type: map_at_1000
1660
+ value: 15.082999999999998
1661
+ - type: map_at_3
1662
+ value: 8.253
1663
+ - type: map_at_5
1664
+ value: 9.508999999999999
1665
+ - type: mrr_at_1
1666
+ value: 42.105
1667
+ - type: mrr_at_10
1668
+ value: 50.44499999999999
1669
+ - type: mrr_at_100
1670
+ value: 51.080000000000005
1671
+ - type: mrr_at_1000
1672
+ value: 51.129999999999995
1673
+ - type: mrr_at_3
1674
+ value: 48.555
1675
+ - type: mrr_at_5
1676
+ value: 49.84
1677
+ - type: ndcg_at_1
1678
+ value: 40.402
1679
+ - type: ndcg_at_10
1680
+ value: 30.403000000000002
1681
+ - type: ndcg_at_100
1682
+ value: 28.216
1683
+ - type: ndcg_at_1000
1684
+ value: 37.021
1685
+ - type: ndcg_at_3
1686
+ value: 35.53
1687
+ - type: ndcg_at_5
1688
+ value: 33.202999999999996
1689
+ - type: precision_at_1
1690
+ value: 42.105
1691
+ - type: precision_at_10
1692
+ value: 22.353
1693
+ - type: precision_at_100
1694
+ value: 7.266
1695
+ - type: precision_at_1000
1696
+ value: 2.011
1697
+ - type: precision_at_3
1698
+ value: 32.921
1699
+ - type: precision_at_5
1700
+ value: 28.297
1701
+ - type: recall_at_1
1702
+ value: 5.015
1703
+ - type: recall_at_10
1704
+ value: 14.393
1705
+ - type: recall_at_100
1706
+ value: 28.893
1707
+ - type: recall_at_1000
1708
+ value: 60.18
1709
+ - type: recall_at_3
1710
+ value: 9.184000000000001
1711
+ - type: recall_at_5
1712
+ value: 11.39
1713
+ - task:
1714
+ type: Retrieval
1715
+ dataset:
1716
+ type: nq
1717
+ name: MTEB NQ
1718
+ config: default
1719
+ split: test
1720
+ revision: None
1721
+ metrics:
1722
+ - type: map_at_1
1723
+ value: 29.524
1724
+ - type: map_at_10
1725
+ value: 44.182
1726
+ - type: map_at_100
1727
+ value: 45.228
1728
+ - type: map_at_1000
1729
+ value: 45.265
1730
+ - type: map_at_3
1731
+ value: 39.978
1732
+ - type: map_at_5
1733
+ value: 42.482
1734
+ - type: mrr_at_1
1735
+ value: 33.256
1736
+ - type: mrr_at_10
1737
+ value: 46.661
1738
+ - type: mrr_at_100
1739
+ value: 47.47
1740
+ - type: mrr_at_1000
1741
+ value: 47.496
1742
+ - type: mrr_at_3
1743
+ value: 43.187999999999995
1744
+ - type: mrr_at_5
1745
+ value: 45.330999999999996
1746
+ - type: ndcg_at_1
1747
+ value: 33.227000000000004
1748
+ - type: ndcg_at_10
1749
+ value: 51.589
1750
+ - type: ndcg_at_100
1751
+ value: 56.043
1752
+ - type: ndcg_at_1000
1753
+ value: 56.937000000000005
1754
+ - type: ndcg_at_3
1755
+ value: 43.751
1756
+ - type: ndcg_at_5
1757
+ value: 47.937000000000005
1758
+ - type: precision_at_1
1759
+ value: 33.227000000000004
1760
+ - type: precision_at_10
1761
+ value: 8.556999999999999
1762
+ - type: precision_at_100
1763
+ value: 1.103
1764
+ - type: precision_at_1000
1765
+ value: 0.11900000000000001
1766
+ - type: precision_at_3
1767
+ value: 19.921
1768
+ - type: precision_at_5
1769
+ value: 14.396999999999998
1770
+ - type: recall_at_1
1771
+ value: 29.524
1772
+ - type: recall_at_10
1773
+ value: 71.615
1774
+ - type: recall_at_100
1775
+ value: 91.056
1776
+ - type: recall_at_1000
1777
+ value: 97.72800000000001
1778
+ - type: recall_at_3
1779
+ value: 51.451
1780
+ - type: recall_at_5
1781
+ value: 61.119
1782
+ - task:
1783
+ type: Retrieval
1784
+ dataset:
1785
+ type: quora
1786
+ name: MTEB QuoraRetrieval
1787
+ config: default
1788
+ split: test
1789
+ revision: None
1790
+ metrics:
1791
+ - type: map_at_1
1792
+ value: 69.596
1793
+ - type: map_at_10
1794
+ value: 83.281
1795
+ - type: map_at_100
1796
+ value: 83.952
1797
+ - type: map_at_1000
1798
+ value: 83.97200000000001
1799
+ - type: map_at_3
1800
+ value: 80.315
1801
+ - type: map_at_5
1802
+ value: 82.223
1803
+ - type: mrr_at_1
1804
+ value: 80.17
1805
+ - type: mrr_at_10
1806
+ value: 86.522
1807
+ - type: mrr_at_100
1808
+ value: 86.644
1809
+ - type: mrr_at_1000
1810
+ value: 86.64500000000001
1811
+ - type: mrr_at_3
1812
+ value: 85.438
1813
+ - type: mrr_at_5
1814
+ value: 86.21799999999999
1815
+ - type: ndcg_at_1
1816
+ value: 80.19
1817
+ - type: ndcg_at_10
1818
+ value: 87.19
1819
+ - type: ndcg_at_100
1820
+ value: 88.567
1821
+ - type: ndcg_at_1000
1822
+ value: 88.70400000000001
1823
+ - type: ndcg_at_3
1824
+ value: 84.17999999999999
1825
+ - type: ndcg_at_5
1826
+ value: 85.931
1827
+ - type: precision_at_1
1828
+ value: 80.19
1829
+ - type: precision_at_10
1830
+ value: 13.209000000000001
1831
+ - type: precision_at_100
1832
+ value: 1.518
1833
+ - type: precision_at_1000
1834
+ value: 0.157
1835
+ - type: precision_at_3
1836
+ value: 36.717
1837
+ - type: precision_at_5
1838
+ value: 24.248
1839
+ - type: recall_at_1
1840
+ value: 69.596
1841
+ - type: recall_at_10
1842
+ value: 94.533
1843
+ - type: recall_at_100
1844
+ value: 99.322
1845
+ - type: recall_at_1000
1846
+ value: 99.965
1847
+ - type: recall_at_3
1848
+ value: 85.911
1849
+ - type: recall_at_5
1850
+ value: 90.809
1851
+ - task:
1852
+ type: Clustering
1853
+ dataset:
1854
+ type: mteb/reddit-clustering
1855
+ name: MTEB RedditClustering
1856
+ config: default
1857
+ split: test
1858
+ revision: 24640382cdbf8abc73003fb0fa6d111a705499eb
1859
+ metrics:
1860
+ - type: v_measure
1861
+ value: 49.27650627571912
1862
+ - task:
1863
+ type: Clustering
1864
+ dataset:
1865
+ type: mteb/reddit-clustering-p2p
1866
+ name: MTEB RedditClusteringP2P
1867
+ config: default
1868
+ split: test
1869
+ revision: 282350215ef01743dc01b456c7f5241fa8937f16
1870
+ metrics:
1871
+ - type: v_measure
1872
+ value: 57.08550946534183
1873
+ - task:
1874
+ type: Retrieval
1875
+ dataset:
1876
+ type: scidocs
1877
+ name: MTEB SCIDOCS
1878
+ config: default
1879
+ split: test
1880
+ revision: None
1881
+ metrics:
1882
+ - type: map_at_1
1883
+ value: 4.568
1884
+ - type: map_at_10
1885
+ value: 10.862
1886
+ - type: map_at_100
1887
+ value: 12.757
1888
+ - type: map_at_1000
1889
+ value: 13.031
1890
+ - type: map_at_3
1891
+ value: 7.960000000000001
1892
+ - type: map_at_5
1893
+ value: 9.337
1894
+ - type: mrr_at_1
1895
+ value: 22.5
1896
+ - type: mrr_at_10
1897
+ value: 32.6
1898
+ - type: mrr_at_100
1899
+ value: 33.603
1900
+ - type: mrr_at_1000
1901
+ value: 33.672000000000004
1902
+ - type: mrr_at_3
1903
+ value: 29.299999999999997
1904
+ - type: mrr_at_5
1905
+ value: 31.25
1906
+ - type: ndcg_at_1
1907
+ value: 22.5
1908
+ - type: ndcg_at_10
1909
+ value: 18.605
1910
+ - type: ndcg_at_100
1911
+ value: 26.029999999999998
1912
+ - type: ndcg_at_1000
1913
+ value: 31.256
1914
+ - type: ndcg_at_3
1915
+ value: 17.873
1916
+ - type: ndcg_at_5
1917
+ value: 15.511
1918
+ - type: precision_at_1
1919
+ value: 22.5
1920
+ - type: precision_at_10
1921
+ value: 9.58
1922
+ - type: precision_at_100
1923
+ value: 2.033
1924
+ - type: precision_at_1000
1925
+ value: 0.33
1926
+ - type: precision_at_3
1927
+ value: 16.633
1928
+ - type: precision_at_5
1929
+ value: 13.54
1930
+ - type: recall_at_1
1931
+ value: 4.568
1932
+ - type: recall_at_10
1933
+ value: 19.402
1934
+ - type: recall_at_100
1935
+ value: 41.277
1936
+ - type: recall_at_1000
1937
+ value: 66.963
1938
+ - type: recall_at_3
1939
+ value: 10.112
1940
+ - type: recall_at_5
1941
+ value: 13.712
1942
+ - task:
1943
+ type: STS
1944
+ dataset:
1945
+ type: mteb/sickr-sts
1946
+ name: MTEB SICK-R
1947
+ config: default
1948
+ split: test
1949
+ revision: a6ea5a8cab320b040a23452cc28066d9beae2cee
1950
+ metrics:
1951
+ - type: cos_sim_pearson
1952
+ value: 83.31992291680787
1953
+ - type: cos_sim_spearman
1954
+ value: 76.7212346922664
1955
+ - type: euclidean_pearson
1956
+ value: 80.42189271706478
1957
+ - type: euclidean_spearman
1958
+ value: 76.7212342532493
1959
+ - type: manhattan_pearson
1960
+ value: 80.33171093031578
1961
+ - type: manhattan_spearman
1962
+ value: 76.63192883074694
1963
+ - task:
1964
+ type: STS
1965
+ dataset:
1966
+ type: mteb/sts12-sts
1967
+ name: MTEB STS12
1968
+ config: default
1969
+ split: test
1970
+ revision: a0d554a64d88156834ff5ae9920b964011b16384
1971
+ metrics:
1972
+ - type: cos_sim_pearson
1973
+ value: 83.16654278886763
1974
+ - type: cos_sim_spearman
1975
+ value: 73.66390263429565
1976
+ - type: euclidean_pearson
1977
+ value: 79.7485360086639
1978
+ - type: euclidean_spearman
1979
+ value: 73.66389870373436
1980
+ - type: manhattan_pearson
1981
+ value: 79.73652237443706
1982
+ - type: manhattan_spearman
1983
+ value: 73.65296117151647
1984
+ - task:
1985
+ type: STS
1986
+ dataset:
1987
+ type: mteb/sts13-sts
1988
+ name: MTEB STS13
1989
+ config: default
1990
+ split: test
1991
+ revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca
1992
+ metrics:
1993
+ - type: cos_sim_pearson
1994
+ value: 82.40389689929246
1995
+ - type: cos_sim_spearman
1996
+ value: 83.29727595993955
1997
+ - type: euclidean_pearson
1998
+ value: 82.23970587854079
1999
+ - type: euclidean_spearman
2000
+ value: 83.29727595993955
2001
+ - type: manhattan_pearson
2002
+ value: 82.18823600831897
2003
+ - type: manhattan_spearman
2004
+ value: 83.20746192209594
2005
+ - task:
2006
+ type: STS
2007
+ dataset:
2008
+ type: mteb/sts14-sts
2009
+ name: MTEB STS14
2010
+ config: default
2011
+ split: test
2012
+ revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375
2013
+ metrics:
2014
+ - type: cos_sim_pearson
2015
+ value: 81.73505246913413
2016
+ - type: cos_sim_spearman
2017
+ value: 79.1686548248754
2018
+ - type: euclidean_pearson
2019
+ value: 80.48889135993412
2020
+ - type: euclidean_spearman
2021
+ value: 79.16864112930354
2022
+ - type: manhattan_pearson
2023
+ value: 80.40720651057302
2024
+ - type: manhattan_spearman
2025
+ value: 79.0640155089286
2026
+ - task:
2027
+ type: STS
2028
+ dataset:
2029
+ type: mteb/sts15-sts
2030
+ name: MTEB STS15
2031
+ config: default
2032
+ split: test
2033
+ revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3
2034
+ metrics:
2035
+ - type: cos_sim_pearson
2036
+ value: 86.3953512879065
2037
+ - type: cos_sim_spearman
2038
+ value: 87.29947322714338
2039
+ - type: euclidean_pearson
2040
+ value: 86.59759438529645
2041
+ - type: euclidean_spearman
2042
+ value: 87.29947511092824
2043
+ - type: manhattan_pearson
2044
+ value: 86.52097806169155
2045
+ - type: manhattan_spearman
2046
+ value: 87.22987242146534
2047
+ - task:
2048
+ type: STS
2049
+ dataset:
2050
+ type: mteb/sts16-sts
2051
+ name: MTEB STS16
2052
+ config: default
2053
+ split: test
2054
+ revision: 4d8694f8f0e0100860b497b999b3dbed754a0513
2055
+ metrics:
2056
+ - type: cos_sim_pearson
2057
+ value: 82.48565753792056
2058
+ - type: cos_sim_spearman
2059
+ value: 83.6049720319893
2060
+ - type: euclidean_pearson
2061
+ value: 82.56452023172913
2062
+ - type: euclidean_spearman
2063
+ value: 83.60490168191697
2064
+ - type: manhattan_pearson
2065
+ value: 82.58079941137872
2066
+ - type: manhattan_spearman
2067
+ value: 83.60975807374051
2068
+ - task:
2069
+ type: STS
2070
+ dataset:
2071
+ type: mteb/sts17-crosslingual-sts
2072
+ name: MTEB STS17 (en-en)
2073
+ config: en-en
2074
+ split: test
2075
+ revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d
2076
+ metrics:
2077
+ - type: cos_sim_pearson
2078
+ value: 88.18239976618212
2079
+ - type: cos_sim_spearman
2080
+ value: 88.23061724730616
2081
+ - type: euclidean_pearson
2082
+ value: 87.78482472776658
2083
+ - type: euclidean_spearman
2084
+ value: 88.23061724730616
2085
+ - type: manhattan_pearson
2086
+ value: 87.75059641730239
2087
+ - type: manhattan_spearman
2088
+ value: 88.22527413524622
2089
+ - task:
2090
+ type: STS
2091
+ dataset:
2092
+ type: mteb/sts22-crosslingual-sts
2093
+ name: MTEB STS22 (en)
2094
+ config: en
2095
+ split: test
2096
+ revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80
2097
+ metrics:
2098
+ - type: cos_sim_pearson
2099
+ value: 63.42816418706765
2100
+ - type: cos_sim_spearman
2101
+ value: 63.4569864520124
2102
+ - type: euclidean_pearson
2103
+ value: 64.35405409953853
2104
+ - type: euclidean_spearman
2105
+ value: 63.4569864520124
2106
+ - type: manhattan_pearson
2107
+ value: 63.96649236073056
2108
+ - type: manhattan_spearman
2109
+ value: 63.01448583722708
2110
+ - task:
2111
+ type: STS
2112
+ dataset:
2113
+ type: mteb/stsbenchmark-sts
2114
+ name: MTEB STSBenchmark
2115
+ config: default
2116
+ split: test
2117
+ revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831
2118
+ metrics:
2119
+ - type: cos_sim_pearson
2120
+ value: 83.41659638047614
2121
+ - type: cos_sim_spearman
2122
+ value: 84.03893866106175
2123
+ - type: euclidean_pearson
2124
+ value: 84.2251203953798
2125
+ - type: euclidean_spearman
2126
+ value: 84.03893866106175
2127
+ - type: manhattan_pearson
2128
+ value: 84.22733643205514
2129
+ - type: manhattan_spearman
2130
+ value: 84.06504411263612
2131
+ - task:
2132
+ type: Reranking
2133
+ dataset:
2134
+ type: mteb/scidocs-reranking
2135
+ name: MTEB SciDocsRR
2136
+ config: default
2137
+ split: test
2138
+ revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab
2139
+ metrics:
2140
+ - type: map
2141
+ value: 79.75608022582414
2142
+ - type: mrr
2143
+ value: 94.0947732369301
2144
+ - task:
2145
+ type: Retrieval
2146
+ dataset:
2147
+ type: scifact
2148
+ name: MTEB SciFact
2149
+ config: default
2150
+ split: test
2151
+ revision: None
2152
+ metrics:
2153
+ - type: map_at_1
2154
+ value: 50.161
2155
+ - type: map_at_10
2156
+ value: 59.458999999999996
2157
+ - type: map_at_100
2158
+ value: 60.156
2159
+ - type: map_at_1000
2160
+ value: 60.194
2161
+ - type: map_at_3
2162
+ value: 56.45400000000001
2163
+ - type: map_at_5
2164
+ value: 58.165
2165
+ - type: mrr_at_1
2166
+ value: 53.333
2167
+ - type: mrr_at_10
2168
+ value: 61.050000000000004
2169
+ - type: mrr_at_100
2170
+ value: 61.586
2171
+ - type: mrr_at_1000
2172
+ value: 61.624
2173
+ - type: mrr_at_3
2174
+ value: 58.889
2175
+ - type: mrr_at_5
2176
+ value: 60.122
2177
+ - type: ndcg_at_1
2178
+ value: 53.333
2179
+ - type: ndcg_at_10
2180
+ value: 63.888999999999996
2181
+ - type: ndcg_at_100
2182
+ value: 66.963
2183
+ - type: ndcg_at_1000
2184
+ value: 68.062
2185
+ - type: ndcg_at_3
2186
+ value: 59.01
2187
+ - type: ndcg_at_5
2188
+ value: 61.373999999999995
2189
+ - type: precision_at_1
2190
+ value: 53.333
2191
+ - type: precision_at_10
2192
+ value: 8.633000000000001
2193
+ - type: precision_at_100
2194
+ value: 1.027
2195
+ - type: precision_at_1000
2196
+ value: 0.11199999999999999
2197
+ - type: precision_at_3
2198
+ value: 23.111
2199
+ - type: precision_at_5
2200
+ value: 15.467
2201
+ - type: recall_at_1
2202
+ value: 50.161
2203
+ - type: recall_at_10
2204
+ value: 75.922
2205
+ - type: recall_at_100
2206
+ value: 90.0
2207
+ - type: recall_at_1000
2208
+ value: 98.667
2209
+ - type: recall_at_3
2210
+ value: 62.90599999999999
2211
+ - type: recall_at_5
2212
+ value: 68.828
2213
+ - task:
2214
+ type: PairClassification
2215
+ dataset:
2216
+ type: mteb/sprintduplicatequestions-pairclassification
2217
+ name: MTEB SprintDuplicateQuestions
2218
+ config: default
2219
+ split: test
2220
+ revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46
2221
+ metrics:
2222
+ - type: cos_sim_accuracy
2223
+ value: 99.81188118811882
2224
+ - type: cos_sim_ap
2225
+ value: 95.11619225962413
2226
+ - type: cos_sim_f1
2227
+ value: 90.35840484603736
2228
+ - type: cos_sim_precision
2229
+ value: 91.23343527013252
2230
+ - type: cos_sim_recall
2231
+ value: 89.5
2232
+ - type: dot_accuracy
2233
+ value: 99.81188118811882
2234
+ - type: dot_ap
2235
+ value: 95.11619225962413
2236
+ - type: dot_f1
2237
+ value: 90.35840484603736
2238
+ - type: dot_precision
2239
+ value: 91.23343527013252
2240
+ - type: dot_recall
2241
+ value: 89.5
2242
+ - type: euclidean_accuracy
2243
+ value: 99.81188118811882
2244
+ - type: euclidean_ap
2245
+ value: 95.11619225962413
2246
+ - type: euclidean_f1
2247
+ value: 90.35840484603736
2248
+ - type: euclidean_precision
2249
+ value: 91.23343527013252
2250
+ - type: euclidean_recall
2251
+ value: 89.5
2252
+ - type: manhattan_accuracy
2253
+ value: 99.80891089108911
2254
+ - type: manhattan_ap
2255
+ value: 95.07294266220966
2256
+ - type: manhattan_f1
2257
+ value: 90.21794221996959
2258
+ - type: manhattan_precision
2259
+ value: 91.46968139773895
2260
+ - type: manhattan_recall
2261
+ value: 89.0
2262
+ - type: max_accuracy
2263
+ value: 99.81188118811882
2264
+ - type: max_ap
2265
+ value: 95.11619225962413
2266
+ - type: max_f1
2267
+ value: 90.35840484603736
2268
+ - task:
2269
+ type: Clustering
2270
+ dataset:
2271
+ type: mteb/stackexchange-clustering
2272
+ name: MTEB StackExchangeClustering
2273
+ config: default
2274
+ split: test
2275
+ revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259
2276
+ metrics:
2277
+ - type: v_measure
2278
+ value: 55.3481874105239
2279
+ - task:
2280
+ type: Clustering
2281
+ dataset:
2282
+ type: mteb/stackexchange-clustering-p2p
2283
+ name: MTEB StackExchangeClusteringP2P
2284
+ config: default
2285
+ split: test
2286
+ revision: 815ca46b2622cec33ccafc3735d572c266efdb44
2287
+ metrics:
2288
+ - type: v_measure
2289
+ value: 34.421291695525
2290
+ - task:
2291
+ type: Reranking
2292
+ dataset:
2293
+ type: mteb/stackoverflowdupquestions-reranking
2294
+ name: MTEB StackOverflowDupQuestions
2295
+ config: default
2296
+ split: test
2297
+ revision: e185fbe320c72810689fc5848eb6114e1ef5ec69
2298
+ metrics:
2299
+ - type: map
2300
+ value: 49.98746633276634
2301
+ - type: mrr
2302
+ value: 50.63143249724133
2303
+ - task:
2304
+ type: Summarization
2305
+ dataset:
2306
+ type: mteb/summeval
2307
+ name: MTEB SummEval
2308
+ config: default
2309
+ split: test
2310
+ revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c
2311
+ metrics:
2312
+ - type: cos_sim_pearson
2313
+ value: 31.009961979844036
2314
+ - type: cos_sim_spearman
2315
+ value: 30.558416108881044
2316
+ - type: dot_pearson
2317
+ value: 31.009964941134253
2318
+ - type: dot_spearman
2319
+ value: 30.545760761761393
2320
+ - task:
2321
+ type: Retrieval
2322
+ dataset:
2323
+ type: trec-covid
2324
+ name: MTEB TRECCOVID
2325
+ config: default
2326
+ split: test
2327
+ revision: None
2328
+ metrics:
2329
+ - type: map_at_1
2330
+ value: 0.207
2331
+ - type: map_at_10
2332
+ value: 1.6
2333
+ - type: map_at_100
2334
+ value: 8.594
2335
+ - type: map_at_1000
2336
+ value: 20.213
2337
+ - type: map_at_3
2338
+ value: 0.585
2339
+ - type: map_at_5
2340
+ value: 0.9039999999999999
2341
+ - type: mrr_at_1
2342
+ value: 78.0
2343
+ - type: mrr_at_10
2344
+ value: 87.4
2345
+ - type: mrr_at_100
2346
+ value: 87.4
2347
+ - type: mrr_at_1000
2348
+ value: 87.4
2349
+ - type: mrr_at_3
2350
+ value: 86.667
2351
+ - type: mrr_at_5
2352
+ value: 87.06700000000001
2353
+ - type: ndcg_at_1
2354
+ value: 73.0
2355
+ - type: ndcg_at_10
2356
+ value: 65.18
2357
+ - type: ndcg_at_100
2358
+ value: 49.631
2359
+ - type: ndcg_at_1000
2360
+ value: 43.498999999999995
2361
+ - type: ndcg_at_3
2362
+ value: 71.83800000000001
2363
+ - type: ndcg_at_5
2364
+ value: 69.271
2365
+ - type: precision_at_1
2366
+ value: 78.0
2367
+ - type: precision_at_10
2368
+ value: 69.19999999999999
2369
+ - type: precision_at_100
2370
+ value: 50.980000000000004
2371
+ - type: precision_at_1000
2372
+ value: 19.426
2373
+ - type: precision_at_3
2374
+ value: 77.333
2375
+ - type: precision_at_5
2376
+ value: 74.0
2377
+ - type: recall_at_1
2378
+ value: 0.207
2379
+ - type: recall_at_10
2380
+ value: 1.822
2381
+ - type: recall_at_100
2382
+ value: 11.849
2383
+ - type: recall_at_1000
2384
+ value: 40.492
2385
+ - type: recall_at_3
2386
+ value: 0.622
2387
+ - type: recall_at_5
2388
+ value: 0.9809999999999999
2389
+ - task:
2390
+ type: Retrieval
2391
+ dataset:
2392
+ type: webis-touche2020
2393
+ name: MTEB Touche2020
2394
+ config: default
2395
+ split: test
2396
+ revision: None
2397
+ metrics:
2398
+ - type: map_at_1
2399
+ value: 2.001
2400
+ - type: map_at_10
2401
+ value: 10.376000000000001
2402
+ - type: map_at_100
2403
+ value: 16.936999999999998
2404
+ - type: map_at_1000
2405
+ value: 18.615000000000002
2406
+ - type: map_at_3
2407
+ value: 5.335999999999999
2408
+ - type: map_at_5
2409
+ value: 7.374
2410
+ - type: mrr_at_1
2411
+ value: 20.408
2412
+ - type: mrr_at_10
2413
+ value: 38.29
2414
+ - type: mrr_at_100
2415
+ value: 39.33
2416
+ - type: mrr_at_1000
2417
+ value: 39.347
2418
+ - type: mrr_at_3
2419
+ value: 32.993
2420
+ - type: mrr_at_5
2421
+ value: 36.973
2422
+ - type: ndcg_at_1
2423
+ value: 17.347
2424
+ - type: ndcg_at_10
2425
+ value: 23.515
2426
+ - type: ndcg_at_100
2427
+ value: 37.457
2428
+ - type: ndcg_at_1000
2429
+ value: 49.439
2430
+ - type: ndcg_at_3
2431
+ value: 22.762999999999998
2432
+ - type: ndcg_at_5
2433
+ value: 22.622
2434
+ - type: precision_at_1
2435
+ value: 20.408
2436
+ - type: precision_at_10
2437
+ value: 22.448999999999998
2438
+ - type: precision_at_100
2439
+ value: 8.184
2440
+ - type: precision_at_1000
2441
+ value: 1.608
2442
+ - type: precision_at_3
2443
+ value: 25.85
2444
+ - type: precision_at_5
2445
+ value: 25.306
2446
+ - type: recall_at_1
2447
+ value: 2.001
2448
+ - type: recall_at_10
2449
+ value: 17.422
2450
+ - type: recall_at_100
2451
+ value: 51.532999999999994
2452
+ - type: recall_at_1000
2453
+ value: 87.466
2454
+ - type: recall_at_3
2455
+ value: 6.861000000000001
2456
+ - type: recall_at_5
2457
+ value: 10.502
2458
+ - task:
2459
+ type: Classification
2460
+ dataset:
2461
+ type: mteb/toxic_conversations_50k
2462
+ name: MTEB ToxicConversationsClassification
2463
+ config: default
2464
+ split: test
2465
+ revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c
2466
+ metrics:
2467
+ - type: accuracy
2468
+ value: 71.54419999999999
2469
+ - type: ap
2470
+ value: 14.372170450843907
2471
+ - type: f1
2472
+ value: 54.94420257390529
2473
+ - task:
2474
+ type: Classification
2475
+ dataset:
2476
+ type: mteb/tweet_sentiment_extraction
2477
+ name: MTEB TweetSentimentExtractionClassification
2478
+ config: default
2479
+ split: test
2480
+ revision: d604517c81ca91fe16a244d1248fc021f9ecee7a
2481
+ metrics:
2482
+ - type: accuracy
2483
+ value: 59.402942840973395
2484
+ - type: f1
2485
+ value: 59.4166538875571
2486
+ - task:
2487
+ type: Clustering
2488
+ dataset:
2489
+ type: mteb/twentynewsgroups-clustering
2490
+ name: MTEB TwentyNewsgroupsClustering
2491
+ config: default
2492
+ split: test
2493
+ revision: 6125ec4e24fa026cec8a478383ee943acfbd5449
2494
+ metrics:
2495
+ - type: v_measure
2496
+ value: 41.569064336457906
2497
+ - task:
2498
+ type: PairClassification
2499
+ dataset:
2500
+ type: mteb/twittersemeval2015-pairclassification
2501
+ name: MTEB TwitterSemEval2015
2502
+ config: default
2503
+ split: test
2504
+ revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1
2505
+ metrics:
2506
+ - type: cos_sim_accuracy
2507
+ value: 85.31322644096085
2508
+ - type: cos_sim_ap
2509
+ value: 72.14518894837381
2510
+ - type: cos_sim_f1
2511
+ value: 66.67489813557229
2512
+ - type: cos_sim_precision
2513
+ value: 62.65954977953121
2514
+ - type: cos_sim_recall
2515
+ value: 71.2401055408971
2516
+ - type: dot_accuracy
2517
+ value: 85.31322644096085
2518
+ - type: dot_ap
2519
+ value: 72.14521480685293
2520
+ - type: dot_f1
2521
+ value: 66.67489813557229
2522
+ - type: dot_precision
2523
+ value: 62.65954977953121
2524
+ - type: dot_recall
2525
+ value: 71.2401055408971
2526
+ - type: euclidean_accuracy
2527
+ value: 85.31322644096085
2528
+ - type: euclidean_ap
2529
+ value: 72.14520820485349
2530
+ - type: euclidean_f1
2531
+ value: 66.67489813557229
2532
+ - type: euclidean_precision
2533
+ value: 62.65954977953121
2534
+ - type: euclidean_recall
2535
+ value: 71.2401055408971
2536
+ - type: manhattan_accuracy
2537
+ value: 85.21785778148656
2538
+ - type: manhattan_ap
2539
+ value: 72.01177147657364
2540
+ - type: manhattan_f1
2541
+ value: 66.62594673833374
2542
+ - type: manhattan_precision
2543
+ value: 62.0336669699727
2544
+ - type: manhattan_recall
2545
+ value: 71.95250659630607
2546
+ - type: max_accuracy
2547
+ value: 85.31322644096085
2548
+ - type: max_ap
2549
+ value: 72.14521480685293
2550
+ - type: max_f1
2551
+ value: 66.67489813557229
2552
+ - task:
2553
+ type: PairClassification
2554
+ dataset:
2555
+ type: mteb/twitterurlcorpus-pairclassification
2556
+ name: MTEB TwitterURLCorpus
2557
+ config: default
2558
+ split: test
2559
+ revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf
2560
+ metrics:
2561
+ - type: cos_sim_accuracy
2562
+ value: 89.12756626693057
2563
+ - type: cos_sim_ap
2564
+ value: 86.05430786440826
2565
+ - type: cos_sim_f1
2566
+ value: 78.27759692216631
2567
+ - type: cos_sim_precision
2568
+ value: 75.33466248931929
2569
+ - type: cos_sim_recall
2570
+ value: 81.45980905451185
2571
+ - type: dot_accuracy
2572
+ value: 89.12950673341872
2573
+ - type: dot_ap
2574
+ value: 86.05431161145492
2575
+ - type: dot_f1
2576
+ value: 78.27759692216631
2577
+ - type: dot_precision
2578
+ value: 75.33466248931929
2579
+ - type: dot_recall
2580
+ value: 81.45980905451185
2581
+ - type: euclidean_accuracy
2582
+ value: 89.12756626693057
2583
+ - type: euclidean_ap
2584
+ value: 86.05431303247397
2585
+ - type: euclidean_f1
2586
+ value: 78.27759692216631
2587
+ - type: euclidean_precision
2588
+ value: 75.33466248931929
2589
+ - type: euclidean_recall
2590
+ value: 81.45980905451185
2591
+ - type: manhattan_accuracy
2592
+ value: 89.04994760740482
2593
+ - type: manhattan_ap
2594
+ value: 86.00860610892074
2595
+ - type: manhattan_f1
2596
+ value: 78.1846776005392
2597
+ - type: manhattan_precision
2598
+ value: 76.10438839480975
2599
+ - type: manhattan_recall
2600
+ value: 80.3818909762858
2601
+ - type: max_accuracy
2602
+ value: 89.12950673341872
2603
+ - type: max_ap
2604
+ value: 86.05431303247397
2605
+ - type: max_f1
2606
+ value: 78.27759692216631
2607
+ ---
2608
+ <!-- TODO: add evaluation results here -->
2609
+ <br><br>
2610
+
2611
+ <p align="center">
2612
+ <img src="https://huggingface.co/datasets/jinaai/documentation-images/resolve/main/logo.webp" alt="Jina AI: Your Search Foundation, Supercharged!" width="150px">
2613
+ </p>
2614
+
2615
+
2616
+ <p align="center">
2617
+ <b>The text embedding set trained by <a href="https://jina.ai/"><b>Jina AI</b></a>.</b>
2618
+ </p>
2619
+
2620
+ ## Quick Start
2621
+
2622
+ The easiest way to starting using `jina-embeddings-v2-small-en` is to use Jina AI's [Embedding API](https://jina.ai/embeddings/).
2623
+
2624
+
2625
+ ## Intended Usage & Model Info
2626
+
2627
+ `jina-embeddings-v2-small-en` is an English, monolingual **embedding model** supporting **8192 sequence length**.
2628
+ It is based on a BERT architecture (JinaBERT) that supports the symmetric bidirectional variant of [ALiBi](https://arxiv.org/abs/2108.12409) to allow longer sequence length.
2629
+ The backbone `jina-bert-v2-small-en` is pretrained on the C4 dataset.
2630
+ The model is further trained on Jina AI's collection of more than 400 millions of sentence pairs and hard negatives.
2631
+ These pairs were obtained from various domains and were carefully selected through a thorough cleaning process.
2632
+
2633
+ The embedding model was trained using 512 sequence length, but extrapolates to 8k sequence length (or even longer) thanks to ALiBi.
2634
+ This makes our model useful for a range of use cases, especially when processing long documents is needed, including long document retrieval, semantic textual similarity, text reranking, recommendation, RAG and LLM-based generative search, etc.
2635
+
2636
+ This model has 33 million parameters, which enables lightning-fast and memory efficient inference, while still delivering impressive performance.
2637
+ Additionally, we provide the following embedding models:
2638
+
2639
+ - [`jina-embeddings-v2-small-en`](https://huggingface.co/jinaai/jina-embeddings-v2-small-en): 33 million parameters **(you are here)**.
2640
+ - [`jina-embeddings-v2-base-en`](https://huggingface.co/jinaai/jina-embeddings-v2-base-en): 137 million parameters.
2641
+ - [`jina-embeddings-v2-base-zh`](https://huggingface.co/jinaai/jina-embeddings-v2-base-zh): 161 million parameters Chinese-English Bilingual embeddings.
2642
+ - [`jina-embeddings-v2-base-de`](https://huggingface.co/jinaai/jina-embeddings-v2-base-de): 161 million parameters German-English Bilingual embeddings.
2643
+ - [`jina-embeddings-v2-base-es`](): Spanish-English Bilingual embeddings (soon).
2644
+
2645
+ ## Data & Parameters
2646
+
2647
+ Jina Embeddings V2 [technical report](https://arxiv.org/abs/2310.19923)
2648
+
2649
+ ## Usage
2650
+
2651
+ **<details><summary>Please apply mean pooling when integrating the model.</summary>**
2652
+ <p>
2653
+
2654
+ ### Why mean pooling?
2655
+
2656
+ `mean poooling` takes all token embeddings from model output and averaging them at sentence/paragraph level.
2657
+ It has been proved to be the most effective way to produce high-quality sentence embeddings.
2658
+ We offer an `encode` function to deal with this.
2659
+
2660
+ However, if you would like to do it without using the default `encode` function:
2661
+
2662
+ ```python
2663
+ import torch
2664
+ import torch.nn.functional as F
2665
+ from transformers import AutoTokenizer, AutoModel
2666
+
2667
+ def mean_pooling(model_output, attention_mask):
2668
+ token_embeddings = model_output[0]
2669
+ input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
2670
+ return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
2671
+
2672
+ sentences = ['How is the weather today?', 'What is the current weather like today?']
2673
+
2674
+ tokenizer = AutoTokenizer.from_pretrained('jinaai/jina-embeddings-v2-small-en')
2675
+ model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-small-en', trust_remote_code=True)
2676
+
2677
+ encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
2678
+
2679
+ with torch.no_grad():
2680
+ model_output = model(**encoded_input)
2681
+
2682
+ embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
2683
+ embeddings = F.normalize(embeddings, p=2, dim=1)
2684
+ ```
2685
+
2686
+ </p>
2687
+ </details>
2688
+
2689
+ You can use Jina Embedding models directly from transformers package.
2690
+
2691
+ ```python
2692
+ !pip install transformers
2693
+ from transformers import AutoModel
2694
+ from numpy.linalg import norm
2695
+
2696
+ cos_sim = lambda a,b: (a @ b.T) / (norm(a)*norm(b))
2697
+ model = AutoModel.from_pretrained('jinaai/jina-embeddings-v2-small-en', trust_remote_code=True) # trust_remote_code is needed to use the encode method
2698
+ embeddings = model.encode(['How is the weather today?', 'What is the current weather like today?'])
2699
+ print(cos_sim(embeddings[0], embeddings[1]))
2700
+ ```
2701
+
2702
+ If you only want to handle shorter sequence, such as 2k, pass the `max_length` parameter to the `encode` function:
2703
+
2704
+ ```python
2705
+ embeddings = model.encode(
2706
+ ['Very long ... document'],
2707
+ max_length=2048
2708
+ )
2709
+ ```
2710
+
2711
+ The latest sentence-transformers also supports Jina embeddings:
2712
+
2713
+ ```python
2714
+ !pip install -U sentence-transformers
2715
+ from sentence_transformers import SentenceTransformer
2716
+ from sentence_transformers.util import cos_sim
2717
+
2718
+ model = SentenceTransformer(
2719
+ "jinaai/jina-embeddings-v2-small-en", # switch to en/zh for English or Chinese
2720
+ trust_remote_code=True
2721
+ )
2722
+
2723
+ # control your input sequence length up to 8192
2724
+ model.max_seq_length = 1024
2725
+
2726
+ embeddings = model.encode([
2727
+ 'How is the weather today?',
2728
+ 'What is the current weather like today?'
2729
+ ])
2730
+ print(cos_sim(embeddings[0], embeddings[1]))
2731
+ ```
2732
+
2733
+ ## Alternatives to Using Transformers Package
2734
+
2735
+ 1. _Managed SaaS_: Get started with a free key on Jina AI's [Embedding API](https://jina.ai/embeddings/).
2736
+ 2. _Private and high-performance deployment_: Get started by picking from our suite of models and deploy them on [AWS Sagemaker](https://aws.amazon.com/marketplace/seller-profile?id=seller-stch2ludm6vgy).
2737
+
2738
+ ## RAG Performance
2739
+
2740
+ According to the latest blog post from [LLamaIndex](https://blog.llamaindex.ai/boosting-rag-picking-the-best-embedding-reranker-models-42d079022e83),
2741
+
2742
+ > In summary, to achieve the peak performance in both hit rate and MRR, the combination of OpenAI or JinaAI-Base embeddings with the CohereRerank/bge-reranker-large reranker stands out.
2743
+
2744
+
2745
+ <img src="https://miro.medium.com/v2/resize:fit:4800/format:webp/1*ZP2RVejCZovF3FDCg-Bx3A.png" width="780px">
2746
+
2747
+ ## Plans
2748
+
2749
+ 1. Bilingual embedding models supporting more European & Asian languages, including Spanish, French, Italian and Japanese.
2750
+ 2. Multimodal embedding models enable Multimodal RAG applications.
2751
+ 3. High-performt rerankers.
2752
+
2753
+ ## Trouble Shooting
2754
+
2755
+ **Loading of Model Code failed**
2756
+
2757
+ If you forgot to pass the `trust_remote_code=True` flag when calling `AutoModel.from_pretrained` or initializing the model via the `SentenceTransformer` class, you will receive an error that the model weights could not be initialized.
2758
+ This is caused by tranformers falling back to creating a default BERT model, instead of a jina-embedding model:
2759
+
2760
+ ```bash
2761
+ Some weights of the model checkpoint at jinaai/jina-embeddings-v2-base-en were not used when initializing BertModel: ['encoder.layer.2.mlp.layernorm.weight', 'encoder.layer.3.mlp.layernorm.weight', 'encoder.layer.10.mlp.wo.bias', 'encoder.layer.5.mlp.wo.bias', 'encoder.layer.2.mlp.layernorm.bias', 'encoder.layer.1.mlp.gated_layers.weight', 'encoder.layer.5.mlp.gated_layers.weight', 'encoder.layer.8.mlp.layernorm.bias', ...
2762
+ ```
2763
+
2764
+ ## Contact
2765
+
2766
+ Join our [Discord community](https://discord.jina.ai) and chat with other community members about ideas.
2767
+
2768
+ ## Citation
2769
+
2770
+ If you find Jina Embeddings useful in your research, please cite the following paper:
2771
+
2772
+ ```
2773
+ @misc{günther2023jina,
2774
+ title={Jina Embeddings 2: 8192-Token General-Purpose Text Embeddings for Long Documents},
2775
+ author={Michael Günther and Jackmin Ong and Isabelle Mohr and Alaeddine Abdessalem and Tanguy Abel and Mohammad Kalim Akram and Susana Guzman and Georgios Mastrapas and Saba Sturua and Bo Wang and Maximilian Werk and Nan Wang and Han Xiao},
2776
+ year={2023},
2777
+ eprint={2310.19923},
2778
+ archivePrefix={arXiv},
2779
+ primaryClass={cs.CL}
2780
+ }
2781
+ ```
config.json ADDED
@@ -0,0 +1,36 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "jinaai/jina-embeddings-v2-small-en",
3
+ "architectures": [
4
+ "JinaBertModel"
5
+ ],
6
+ "attention_probs_dropout_prob": 0.0,
7
+ "attn_implementation": null,
8
+ "auto_map": {
9
+ "AutoConfig": "jinaai/jina-bert-implementation--configuration_bert.JinaBertConfig",
10
+ "AutoModel": "jinaai/jina-bert-implementation--modeling_bert.JinaBertModel",
11
+ "AutoModelForMaskedLM": "jinaai/jina-bert-implementation--modeling_bert.JinaBertForMaskedLM",
12
+ "AutoModelForSequenceClassification": "jinaai/jina-bert-implementation--modeling_bert.JinaBertForSequenceClassification"
13
+ },
14
+ "classifier_dropout": null,
15
+ "emb_pooler": "mean",
16
+ "feed_forward_type": "geglu",
17
+ "gradient_checkpointing": false,
18
+ "hidden_act": "gelu",
19
+ "hidden_dropout_prob": 0.1,
20
+ "hidden_size": 512,
21
+ "initializer_range": 0.02,
22
+ "intermediate_size": 2048,
23
+ "layer_norm_eps": 1e-12,
24
+ "max_position_embeddings": 8192,
25
+ "model_max_length": 8192,
26
+ "model_type": "bert",
27
+ "num_attention_heads": 8,
28
+ "num_hidden_layers": 4,
29
+ "pad_token_id": 0,
30
+ "position_embedding_type": "alibi",
31
+ "torch_dtype": "float32",
32
+ "transformers_version": "4.48.1",
33
+ "type_vocab_size": 2,
34
+ "use_cache": true,
35
+ "vocab_size": 30528
36
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "3.4.1",
4
+ "transformers": "4.48.1",
5
+ "pytorch": "2.6.0+cu124"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:89980b047a2c2baeabafc878fd66061305a6a6a62092375a9192d326ce89a089
3
+ size 130769960
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 8192,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": true,
45
+ "cls_token": "[CLS]",
46
+ "do_basic_tokenize": true,
47
+ "do_lower_case": true,
48
+ "extra_special_tokens": {},
49
+ "mask_token": "[MASK]",
50
+ "model_max_length": 8192,
51
+ "never_split": null,
52
+ "pad_token": "[PAD]",
53
+ "sep_token": "[SEP]",
54
+ "strip_accents": null,
55
+ "tokenize_chinese_chars": true,
56
+ "tokenizer_class": "BertTokenizer",
57
+ "unk_token": "[UNK]"
58
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff