--- library_name: transformers license: apache-2.0 base_model: bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: bert-base-uncased-finetuned-ner-prostata results: [] --- # bert-base-uncased-finetuned-ner-prostata This model is a fine-tuned version of [bert-base-uncased](https://huggingface.co/bert-base-uncased) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1427 - Precision: 0.9238 - Recall: 0.9494 - F1: 0.9364 - Accuracy: 0.9755 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.1389 | 1.0 | 2395 | 0.1002 | 0.9331 | 0.9256 | 0.9293 | 0.9750 | | 0.09 | 2.0 | 4790 | 0.0930 | 0.9334 | 0.9573 | 0.9452 | 0.9795 | | 0.0608 | 3.0 | 7185 | 0.0983 | 0.9275 | 0.9525 | 0.9399 | 0.9770 | | 0.0541 | 4.0 | 9580 | 0.1011 | 0.9390 | 0.9553 | 0.9471 | 0.9793 | | 0.0447 | 5.0 | 11975 | 0.1060 | 0.9348 | 0.9489 | 0.9418 | 0.9789 | | 0.0383 | 6.0 | 14370 | 0.1128 | 0.9324 | 0.9506 | 0.9414 | 0.9782 | | 0.0306 | 7.0 | 16765 | 0.1130 | 0.9395 | 0.9493 | 0.9443 | 0.9795 | | 0.0286 | 8.0 | 19160 | 0.1200 | 0.9331 | 0.9519 | 0.9424 | 0.9787 | | 0.024 | 9.0 | 21555 | 0.1215 | 0.9352 | 0.9500 | 0.9425 | 0.9788 | | 0.0213 | 10.0 | 23950 | 0.1242 | 0.9370 | 0.9488 | 0.9428 | 0.9788 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.1