yonishafir commited on
Commit
62bda9c
·
verified ·
1 Parent(s): fe2c409

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +30 -12
README.md CHANGED
@@ -89,15 +89,16 @@ import os
89
  import random
90
  import gradio as gr
91
 
92
-
93
  import cv2
94
  import torch
95
  import numpy as np
96
  from PIL import Image
97
 
98
  from transformers import CLIPVisionModelWithProjection
99
- from diffusers.utils import load_image
100
  from diffusers.models import ControlNetModel
 
 
 
101
  from insightface.app import FaceAnalysis
102
 
103
  import io
@@ -108,8 +109,8 @@ from pipeline_stable_diffusion_xl_instantid import StableDiffusionXLInstantIDPip
108
  import pandas as pd
109
  import json
110
  import requests
111
- from PIL import Image
112
  from io import BytesIO
 
113
 
114
 
115
  def resize_img(input_image, max_side=1280, min_side=1024, size=None,
@@ -152,33 +153,50 @@ def make_canny_condition(image, min_val=100, max_val=200, w_bilateral=True):
152
 
153
  default_negative_prompt = "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"
154
 
155
- # Load face detection and recognition package
156
- app = FaceAnalysis(name='antelopev2', root='./', providers=['CPUExecutionProvider'])
 
 
 
 
 
 
 
 
 
 
157
  app.prepare(ctx_id=0, det_size=(640, 640))
158
 
159
 
 
 
 
 
 
 
 
160
 
161
- face_adapter = f"./ip-adapter.bin"
162
- controlnet_path = f"./controlnet"
163
 
 
164
 
 
 
 
165
  base_model_path = f'briaai/BRIA-2.3'
166
  resolution = 1024
167
 
 
168
  controlnet_lnmks = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
169
-
170
  controlnet_canny = ControlNetModel.from_pretrained("briaai/BRIA-2.3-ControlNet-Canny",
171
- torch_dtype=torch.float16)
172
-
173
  controlnet = [controlnet_lnmks, controlnet_canny]
174
 
175
- device = "cuda" if torch.cuda.is_available() else "cpu"
176
 
177
  image_encoder = CLIPVisionModelWithProjection.from_pretrained(
178
  f"./checkpoints/image_encoder",
179
  torch_dtype=torch.float16,
180
  )
181
-
182
  pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
183
  base_model_path,
184
  controlnet=controlnet,
 
89
  import random
90
  import gradio as gr
91
 
 
92
  import cv2
93
  import torch
94
  import numpy as np
95
  from PIL import Image
96
 
97
  from transformers import CLIPVisionModelWithProjection
 
98
  from diffusers.models import ControlNetModel
99
+
100
+ from huggingface_hub import snapshot_download
101
+
102
  from insightface.app import FaceAnalysis
103
 
104
  import io
 
109
  import pandas as pd
110
  import json
111
  import requests
 
112
  from io import BytesIO
113
+ from huggingface_hub import hf_hub_download, HfApi
114
 
115
 
116
  def resize_img(input_image, max_side=1280, min_side=1024, size=None,
 
153
 
154
  default_negative_prompt = "Logo,Watermark,Text,Ugly,Morbid,Extra fingers,Poorly drawn hands,Mutation,Blurry,Extra limbs,Gross proportions,Missing arms,Mutated hands,Long neck,Duplicate,Mutilated,Mutilated hands,Poorly drawn face,Deformed,Bad anatomy,Cloned face,Malformed limbs,Missing legs,Too many fingers"
155
 
156
+ # Download face encoder
157
+ snapshot_download(
158
+ "fal/AuraFace-v1",
159
+ local_dir="models/auraface",
160
+ )
161
+
162
+ app = FaceAnalysis(
163
+ name="auraface",
164
+ providers=["CUDAExecutionProvider", "CPUExecutionProvider"],
165
+ root=".",
166
+ )
167
+
168
  app.prepare(ctx_id=0, det_size=(640, 640))
169
 
170
 
171
+ # download checkpoints
172
+ print("Downloading checkpoints")
173
+ hf_hub_download(repo_id="briaai/ID_preservation_2.3_auraFaceEnc", filename="checkpoint_105000/controlnet/config.json", local_dir="./checkpoints")
174
+ hf_hub_download(repo_id="briaai/ID_preservation_2.3_auraFaceEnc", filename="checkpoint_105000/controlnet/diffusion_pytorch_model.safetensors", local_dir="./checkpoints")
175
+ hf_hub_download(repo_id="briaai/ID_preservation_2.3_auraFaceEnc", filename="checkpoint_105000/ip-adapter.bin", local_dir="./checkpoints")
176
+ hf_hub_download(repo_id="briaai/ID_preservation_2.3_auraFaceEnc", filename="image_encoder/pytorch_model.bin", local_dir="./checkpoints")
177
+ hf_hub_download(repo_id="briaai/ID_preservation_2.3_auraFaceEnc", filename="image_encoder/config.json", local_dir="./checkpoints")
178
 
 
 
179
 
180
+ device = "cuda" if torch.cuda.is_available() else "cpu"
181
 
182
+ # ckpts paths
183
+ face_adapter = f"./checkpoints/checkpoint_105000/ip-adapter.bin"
184
+ controlnet_path = f"./checkpoints/checkpoint_105000/controlnet"
185
  base_model_path = f'briaai/BRIA-2.3'
186
  resolution = 1024
187
 
188
+ # Load ControlNet models
189
  controlnet_lnmks = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16)
 
190
  controlnet_canny = ControlNetModel.from_pretrained("briaai/BRIA-2.3-ControlNet-Canny",
191
+ torch_dtype=torch.float16)
192
+
193
  controlnet = [controlnet_lnmks, controlnet_canny]
194
 
 
195
 
196
  image_encoder = CLIPVisionModelWithProjection.from_pretrained(
197
  f"./checkpoints/image_encoder",
198
  torch_dtype=torch.float16,
199
  )
 
200
  pipe = StableDiffusionXLInstantIDPipeline.from_pretrained(
201
  base_model_path,
202
  controlnet=controlnet,