Commit 
							
							·
						
						9172891
	
1
								Parent(s):
							
							5f36c7d
								
Upload checkpoint-18250step with huggingface_hub
Browse files
    	
        checkpoint-18250step/config.json
    ADDED
    
    | @@ -0,0 +1,40 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_name_or_path": "gpt2-xl",
         | 
| 3 | 
            +
              "activation_function": "gelu_new",
         | 
| 4 | 
            +
              "architectures": [
         | 
| 5 | 
            +
                "GPT2LMHeadModel"
         | 
| 6 | 
            +
              ],
         | 
| 7 | 
            +
              "attn_pdrop": 0.1,
         | 
| 8 | 
            +
              "bos_token_id": 50256,
         | 
| 9 | 
            +
              "embd_pdrop": 0.1,
         | 
| 10 | 
            +
              "eos_token_id": 50256,
         | 
| 11 | 
            +
              "initializer_range": 0.02,
         | 
| 12 | 
            +
              "layer_norm_epsilon": 1e-05,
         | 
| 13 | 
            +
              "model_type": "gpt2",
         | 
| 14 | 
            +
              "n_ctx": 1024,
         | 
| 15 | 
            +
              "n_embd": 1600,
         | 
| 16 | 
            +
              "n_head": 25,
         | 
| 17 | 
            +
              "n_inner": null,
         | 
| 18 | 
            +
              "n_layer": 48,
         | 
| 19 | 
            +
              "n_positions": 1024,
         | 
| 20 | 
            +
              "output_past": true,
         | 
| 21 | 
            +
              "reorder_and_upcast_attn": false,
         | 
| 22 | 
            +
              "resid_pdrop": 0.1,
         | 
| 23 | 
            +
              "scale_attn_by_inverse_layer_idx": false,
         | 
| 24 | 
            +
              "scale_attn_weights": true,
         | 
| 25 | 
            +
              "summary_activation": null,
         | 
| 26 | 
            +
              "summary_first_dropout": 0.1,
         | 
| 27 | 
            +
              "summary_proj_to_labels": true,
         | 
| 28 | 
            +
              "summary_type": "cls_index",
         | 
| 29 | 
            +
              "summary_use_proj": true,
         | 
| 30 | 
            +
              "task_specific_params": {
         | 
| 31 | 
            +
                "text-generation": {
         | 
| 32 | 
            +
                  "do_sample": true,
         | 
| 33 | 
            +
                  "max_length": 50
         | 
| 34 | 
            +
                }
         | 
| 35 | 
            +
              },
         | 
| 36 | 
            +
              "torch_dtype": "float16",
         | 
| 37 | 
            +
              "transformers_version": "4.27.4",
         | 
| 38 | 
            +
              "use_cache": false,
         | 
| 39 | 
            +
              "vocab_size": 50259
         | 
| 40 | 
            +
            }
         | 
    	
        checkpoint-18250step/generation_config.json
    ADDED
    
    | @@ -0,0 +1,6 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            {
         | 
| 2 | 
            +
              "_from_model_config": true,
         | 
| 3 | 
            +
              "bos_token_id": 50256,
         | 
| 4 | 
            +
              "eos_token_id": 50256,
         | 
| 5 | 
            +
              "transformers_version": "4.27.4"
         | 
| 6 | 
            +
            }
         | 
    	
        checkpoint-18250step/latest
    ADDED
    
    | @@ -0,0 +1 @@ | |
|  | 
|  | |
| 1 | 
            +
            global_step18250
         | 
    	
        checkpoint-18250step/pytorch_model.bin
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:0f7c13638da3c420bf897a7b6cad629b63e4b6013d2e2e6d437ced54e76cd481
         | 
| 3 | 
            +
            size 3165664279
         | 
    	
        checkpoint-18250step/train_state.json
    ADDED
    
    | @@ -0,0 +1 @@ | |
|  | 
|  | |
| 1 | 
            +
            {"completed_steps": 18250}
         | 
    	
        checkpoint-18250step/zero_to_fp32.py
    ADDED
    
    | @@ -0,0 +1,482 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            #!/usr/bin/env python
         | 
| 2 | 
            +
             | 
| 3 | 
            +
            # This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
         | 
| 4 | 
            +
            # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
         | 
| 5 | 
            +
            # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
         | 
| 6 | 
            +
            # application.
         | 
| 7 | 
            +
            #
         | 
| 8 | 
            +
            # example: python zero_to_fp32.py . pytorch_model.bin
         | 
| 9 | 
            +
             | 
| 10 | 
            +
            import argparse
         | 
| 11 | 
            +
            import torch
         | 
| 12 | 
            +
            import glob
         | 
| 13 | 
            +
            import math
         | 
| 14 | 
            +
            import os
         | 
| 15 | 
            +
            import re
         | 
| 16 | 
            +
            from collections import OrderedDict
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
         | 
| 19 | 
            +
            # DeepSpeed data structures it has to be available in the current python environment.
         | 
| 20 | 
            +
            from deepspeed.utils import logger
         | 
| 21 | 
            +
            from deepspeed.checkpoint.constants import (DS_VERSION,
         | 
| 22 | 
            +
                                                        OPTIMIZER_STATE_DICT,
         | 
| 23 | 
            +
                                                        SINGLE_PARTITION_OF_FP32_GROUPS,
         | 
| 24 | 
            +
                                                        FP32_FLAT_GROUPS,
         | 
| 25 | 
            +
                                                        ZERO_STAGE,
         | 
| 26 | 
            +
                                                        PARTITION_COUNT,
         | 
| 27 | 
            +
                                                        PARAM_SHAPES,
         | 
| 28 | 
            +
                                                        BUFFER_NAMES)
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            debug = 0
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            # load to cpu
         | 
| 33 | 
            +
            device = torch.device('cpu')
         | 
| 34 | 
            +
             | 
| 35 | 
            +
             | 
| 36 | 
            +
            def atoi(text):
         | 
| 37 | 
            +
                return int(text) if text.isdigit() else text
         | 
| 38 | 
            +
             | 
| 39 | 
            +
             | 
| 40 | 
            +
            def natural_keys(text):
         | 
| 41 | 
            +
                '''
         | 
| 42 | 
            +
                alist.sort(key=natural_keys) sorts in human order
         | 
| 43 | 
            +
                http://nedbatchelder.com/blog/200712/human_sorting.html
         | 
| 44 | 
            +
                (See Toothy's implementation in the comments)
         | 
| 45 | 
            +
                '''
         | 
| 46 | 
            +
                return [atoi(c) for c in re.split(r'(\d+)', text)]
         | 
| 47 | 
            +
             | 
| 48 | 
            +
             | 
| 49 | 
            +
            def get_model_state_file(checkpoint_dir, zero_stage):
         | 
| 50 | 
            +
                if not os.path.isdir(checkpoint_dir):
         | 
| 51 | 
            +
                    raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                # there should be only one file
         | 
| 54 | 
            +
                if zero_stage == 2:
         | 
| 55 | 
            +
                    file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
         | 
| 56 | 
            +
                elif zero_stage == 3:
         | 
| 57 | 
            +
                    file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                if not os.path.exists(file):
         | 
| 60 | 
            +
                    raise FileNotFoundError(f"can't find model states file at '{file}'")
         | 
| 61 | 
            +
             | 
| 62 | 
            +
                return file
         | 
| 63 | 
            +
             | 
| 64 | 
            +
             | 
| 65 | 
            +
            def get_optim_files(checkpoint_dir):
         | 
| 66 | 
            +
                # XXX: need to test that this simple glob rule works for multi-node setup too
         | 
| 67 | 
            +
                optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
         | 
| 68 | 
            +
                                                            "*_optim_states.pt")),
         | 
| 69 | 
            +
                                     key=natural_keys)
         | 
| 70 | 
            +
             | 
| 71 | 
            +
                if len(optim_files) == 0:
         | 
| 72 | 
            +
                    raise FileNotFoundError(
         | 
| 73 | 
            +
                        f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
         | 
| 74 | 
            +
             | 
| 75 | 
            +
                return optim_files
         | 
| 76 | 
            +
             | 
| 77 | 
            +
             | 
| 78 | 
            +
            def parse_model_state(file):
         | 
| 79 | 
            +
                state_dict = torch.load(file, map_location=device)
         | 
| 80 | 
            +
             | 
| 81 | 
            +
                if BUFFER_NAMES not in state_dict:
         | 
| 82 | 
            +
                    raise ValueError(f"{file} is not a model state checkpoint")
         | 
| 83 | 
            +
                buffer_names = state_dict[BUFFER_NAMES]
         | 
| 84 | 
            +
                if debug:
         | 
| 85 | 
            +
                    print("Found buffers:", buffer_names)
         | 
| 86 | 
            +
             | 
| 87 | 
            +
                # recover just the buffers while restoring them to fp32 if they were saved in fp16
         | 
| 88 | 
            +
                buffers = {
         | 
| 89 | 
            +
                    k: v.float()
         | 
| 90 | 
            +
                    for k,
         | 
| 91 | 
            +
                    v in state_dict["module"].items() if k in buffer_names
         | 
| 92 | 
            +
                }
         | 
| 93 | 
            +
                param_shapes = state_dict[PARAM_SHAPES]
         | 
| 94 | 
            +
             | 
| 95 | 
            +
                ds_version = state_dict.get(DS_VERSION, None)
         | 
| 96 | 
            +
             | 
| 97 | 
            +
                return buffers, param_shapes, ds_version
         | 
| 98 | 
            +
             | 
| 99 | 
            +
             | 
| 100 | 
            +
            def parse_optim_states(files, ds_checkpoint_dir):
         | 
| 101 | 
            +
             | 
| 102 | 
            +
                total_files = len(files)
         | 
| 103 | 
            +
                state_dicts = []
         | 
| 104 | 
            +
                for f in files:
         | 
| 105 | 
            +
                    state_dicts.append(torch.load(f, map_location=device))
         | 
| 106 | 
            +
             | 
| 107 | 
            +
                if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
         | 
| 108 | 
            +
                    raise ValueError(f"{files[0]} is not a zero checkpoint")
         | 
| 109 | 
            +
                zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
         | 
| 110 | 
            +
                world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
         | 
| 111 | 
            +
             | 
| 112 | 
            +
                # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
         | 
| 113 | 
            +
                # parameters can be different from data parallelism for non-expert parameters. So we can just
         | 
| 114 | 
            +
                # use the max of the partition_count to get the dp world_size.
         | 
| 115 | 
            +
             | 
| 116 | 
            +
                if type(world_size) is list:
         | 
| 117 | 
            +
                    world_size = max(world_size)
         | 
| 118 | 
            +
             | 
| 119 | 
            +
                if world_size != total_files:
         | 
| 120 | 
            +
                    raise ValueError(
         | 
| 121 | 
            +
                        f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
         | 
| 122 | 
            +
                        "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
         | 
| 123 | 
            +
                    )
         | 
| 124 | 
            +
             | 
| 125 | 
            +
                # the groups are named differently in each stage
         | 
| 126 | 
            +
                if zero_stage == 2:
         | 
| 127 | 
            +
                    fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
         | 
| 128 | 
            +
                elif zero_stage == 3:
         | 
| 129 | 
            +
                    fp32_groups_key = FP32_FLAT_GROUPS
         | 
| 130 | 
            +
                else:
         | 
| 131 | 
            +
                    raise ValueError(f"unknown zero stage {zero_stage}")
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                if zero_stage == 2:
         | 
| 134 | 
            +
                    fp32_flat_groups = [
         | 
| 135 | 
            +
                        state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key]
         | 
| 136 | 
            +
                        for i in range(len(state_dicts))
         | 
| 137 | 
            +
                    ]
         | 
| 138 | 
            +
                elif zero_stage == 3:
         | 
| 139 | 
            +
                    # if there is more than one param group, there will be multiple flattened tensors - one
         | 
| 140 | 
            +
                    # flattened tensor per group - for simplicity merge them into a single tensor
         | 
| 141 | 
            +
                    #
         | 
| 142 | 
            +
                    # XXX: could make the script more memory efficient for when there are multiple groups - it
         | 
| 143 | 
            +
                    # will require matching the sub-lists of param_shapes for each param group flattened tensor
         | 
| 144 | 
            +
             | 
| 145 | 
            +
                    fp32_flat_groups = [
         | 
| 146 | 
            +
                        torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key],
         | 
| 147 | 
            +
                                  0) for i in range(len(state_dicts))
         | 
| 148 | 
            +
                    ]
         | 
| 149 | 
            +
             | 
| 150 | 
            +
                return zero_stage, world_size, fp32_flat_groups
         | 
| 151 | 
            +
             | 
| 152 | 
            +
             | 
| 153 | 
            +
            def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
         | 
| 154 | 
            +
                """
         | 
| 155 | 
            +
                Returns fp32 state_dict reconstructed from ds checkpoint
         | 
| 156 | 
            +
             | 
| 157 | 
            +
                Args:
         | 
| 158 | 
            +
                    - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
         | 
| 159 | 
            +
             | 
| 160 | 
            +
                """
         | 
| 161 | 
            +
                print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
         | 
| 162 | 
            +
             | 
| 163 | 
            +
                optim_files = get_optim_files(ds_checkpoint_dir)
         | 
| 164 | 
            +
                zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
         | 
| 165 | 
            +
                print(
         | 
| 166 | 
            +
                    f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
         | 
| 167 | 
            +
             | 
| 168 | 
            +
                model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
         | 
| 169 | 
            +
                buffers, param_shapes, ds_version = parse_model_state(model_file)
         | 
| 170 | 
            +
                print(f'Parsing checkpoint created by deepspeed=={ds_version}')
         | 
| 171 | 
            +
             | 
| 172 | 
            +
                if zero_stage == 2:
         | 
| 173 | 
            +
                    return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
         | 
| 174 | 
            +
                                                                      param_shapes,
         | 
| 175 | 
            +
                                                                      fp32_flat_groups,
         | 
| 176 | 
            +
                                                                      buffers)
         | 
| 177 | 
            +
                elif zero_stage == 3:
         | 
| 178 | 
            +
                    return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
         | 
| 179 | 
            +
                                                                      param_shapes,
         | 
| 180 | 
            +
                                                                      fp32_flat_groups,
         | 
| 181 | 
            +
                                                                      buffers)
         | 
| 182 | 
            +
             | 
| 183 | 
            +
             | 
| 184 | 
            +
            def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
         | 
| 185 | 
            +
                                                           param_shapes,
         | 
| 186 | 
            +
                                                           fp32_flat_groups,
         | 
| 187 | 
            +
                                                           buffers):
         | 
| 188 | 
            +
             | 
| 189 | 
            +
                # Reconstruction protocol:
         | 
| 190 | 
            +
                #
         | 
| 191 | 
            +
                # XXX: document this
         | 
| 192 | 
            +
             | 
| 193 | 
            +
                if debug:
         | 
| 194 | 
            +
                    for i in range(world_size):
         | 
| 195 | 
            +
                        for j in range(len(fp32_flat_groups[0])):
         | 
| 196 | 
            +
                            print(
         | 
| 197 | 
            +
                                f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
         | 
| 198 | 
            +
             | 
| 199 | 
            +
                # XXX: memory usage doubles here (zero2)
         | 
| 200 | 
            +
                num_param_groups = len(fp32_flat_groups[0])
         | 
| 201 | 
            +
                merged_single_partition_of_fp32_groups = []
         | 
| 202 | 
            +
                for i in range(num_param_groups):
         | 
| 203 | 
            +
                    merged_partitions = [sd[i] for sd in fp32_flat_groups]
         | 
| 204 | 
            +
                    full_single_fp32_vector = torch.cat(merged_partitions, 0)
         | 
| 205 | 
            +
                    merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
         | 
| 206 | 
            +
                avail_numel = sum([
         | 
| 207 | 
            +
                    full_single_fp32_vector.numel()
         | 
| 208 | 
            +
                    for full_single_fp32_vector in merged_single_partition_of_fp32_groups
         | 
| 209 | 
            +
                ])
         | 
| 210 | 
            +
             | 
| 211 | 
            +
                if debug:
         | 
| 212 | 
            +
                    wanted_params = sum([len(shapes) for shapes in param_shapes])
         | 
| 213 | 
            +
                    wanted_numel = sum(
         | 
| 214 | 
            +
                        [sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
         | 
| 215 | 
            +
                    # not asserting if there is a mismatch due to possible padding
         | 
| 216 | 
            +
                    print(f"Have {avail_numel} numels to process.")
         | 
| 217 | 
            +
                    print(f"Need {wanted_numel} numels in {wanted_params} params.")
         | 
| 218 | 
            +
             | 
| 219 | 
            +
                state_dict = OrderedDict()
         | 
| 220 | 
            +
             | 
| 221 | 
            +
                # buffers
         | 
| 222 | 
            +
                state_dict.update(buffers)
         | 
| 223 | 
            +
                if debug:
         | 
| 224 | 
            +
                    print(f"added {len(buffers)} buffers")
         | 
| 225 | 
            +
             | 
| 226 | 
            +
                # params
         | 
| 227 | 
            +
                # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
         | 
| 228 | 
            +
                # out-of-core computing solution
         | 
| 229 | 
            +
                total_numel = 0
         | 
| 230 | 
            +
                total_params = 0
         | 
| 231 | 
            +
                for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
         | 
| 232 | 
            +
                    offset = 0
         | 
| 233 | 
            +
                    avail_numel = full_single_fp32_vector.numel()
         | 
| 234 | 
            +
                    for name, shape in shapes.items():
         | 
| 235 | 
            +
             | 
| 236 | 
            +
                        unpartitioned_numel = shape.numel()
         | 
| 237 | 
            +
                        total_numel += unpartitioned_numel
         | 
| 238 | 
            +
                        total_params += 1
         | 
| 239 | 
            +
             | 
| 240 | 
            +
                        if debug:
         | 
| 241 | 
            +
                            print(
         | 
| 242 | 
            +
                                f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
         | 
| 243 | 
            +
                            )
         | 
| 244 | 
            +
                        state_dict[name] = full_single_fp32_vector.narrow(
         | 
| 245 | 
            +
                            0,
         | 
| 246 | 
            +
                            offset,
         | 
| 247 | 
            +
                            unpartitioned_numel).view(shape)
         | 
| 248 | 
            +
                        offset += unpartitioned_numel
         | 
| 249 | 
            +
             | 
| 250 | 
            +
                    # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
         | 
| 251 | 
            +
                    # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
         | 
| 252 | 
            +
                    # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
         | 
| 253 | 
            +
                    # live optimizer object, so we are checking that the numbers are within the right range
         | 
| 254 | 
            +
                    align_to = 2 * world_size
         | 
| 255 | 
            +
             | 
| 256 | 
            +
                    def zero2_align(x):
         | 
| 257 | 
            +
                        return align_to * math.ceil(x / align_to)
         | 
| 258 | 
            +
             | 
| 259 | 
            +
                    if debug:
         | 
| 260 | 
            +
                        print(f"original offset={offset}, avail_numel={avail_numel}")
         | 
| 261 | 
            +
             | 
| 262 | 
            +
                    offset = zero2_align(offset)
         | 
| 263 | 
            +
                    avail_numel = zero2_align(avail_numel)
         | 
| 264 | 
            +
             | 
| 265 | 
            +
                    if debug:
         | 
| 266 | 
            +
                        print(f"aligned  offset={offset}, avail_numel={avail_numel}")
         | 
| 267 | 
            +
             | 
| 268 | 
            +
                    # Sanity check
         | 
| 269 | 
            +
                    if offset != avail_numel:
         | 
| 270 | 
            +
                        raise ValueError(
         | 
| 271 | 
            +
                            f"consumed {offset} numels out of {avail_numel} - something is wrong")
         | 
| 272 | 
            +
             | 
| 273 | 
            +
                print(
         | 
| 274 | 
            +
                    f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
         | 
| 275 | 
            +
                )
         | 
| 276 | 
            +
             | 
| 277 | 
            +
                return state_dict
         | 
| 278 | 
            +
             | 
| 279 | 
            +
             | 
| 280 | 
            +
            def zero3_partitioned_param_info(unpartitioned_numel, world_size):
         | 
| 281 | 
            +
                remainder = unpartitioned_numel % world_size
         | 
| 282 | 
            +
                padding_numel = (world_size - remainder) if remainder else 0
         | 
| 283 | 
            +
                partitioned_numel = math.ceil(unpartitioned_numel / world_size)
         | 
| 284 | 
            +
                return partitioned_numel, padding_numel
         | 
| 285 | 
            +
             | 
| 286 | 
            +
             | 
| 287 | 
            +
            def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
         | 
| 288 | 
            +
                                                           param_shapes,
         | 
| 289 | 
            +
                                                           fp32_flat_groups,
         | 
| 290 | 
            +
                                                           buffers):
         | 
| 291 | 
            +
             | 
| 292 | 
            +
                # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
         | 
| 293 | 
            +
                # param, re-consolidating each param, while dealing with padding if any
         | 
| 294 | 
            +
             | 
| 295 | 
            +
                avail_numel = fp32_flat_groups[0].numel() * world_size
         | 
| 296 | 
            +
                # merge list of dicts, preserving order
         | 
| 297 | 
            +
                param_shapes = {k: v for d in param_shapes for k, v in d.items()}
         | 
| 298 | 
            +
             | 
| 299 | 
            +
                if debug:
         | 
| 300 | 
            +
                    for i in range(world_size):
         | 
| 301 | 
            +
                        print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
         | 
| 302 | 
            +
             | 
| 303 | 
            +
                    wanted_params = len(param_shapes)
         | 
| 304 | 
            +
                    wanted_numel = sum(shape.numel() for shape in param_shapes.values())
         | 
| 305 | 
            +
                    # not asserting if there is a mismatch due to possible padding
         | 
| 306 | 
            +
                    print(f"Have {avail_numel} numels to process.")
         | 
| 307 | 
            +
                    print(f"Need {wanted_numel} numels in {wanted_params} params.")
         | 
| 308 | 
            +
             | 
| 309 | 
            +
                state_dict = OrderedDict()
         | 
| 310 | 
            +
             | 
| 311 | 
            +
                # buffers
         | 
| 312 | 
            +
                state_dict.update(buffers)
         | 
| 313 | 
            +
                if debug:
         | 
| 314 | 
            +
                    print(f"added {len(buffers)} buffers")
         | 
| 315 | 
            +
             | 
| 316 | 
            +
                # params
         | 
| 317 | 
            +
                # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
         | 
| 318 | 
            +
                # out-of-core computing solution
         | 
| 319 | 
            +
                offset = 0
         | 
| 320 | 
            +
                total_numel = 0
         | 
| 321 | 
            +
                total_params = 0
         | 
| 322 | 
            +
                for name, shape in param_shapes.items():
         | 
| 323 | 
            +
             | 
| 324 | 
            +
                    unpartitioned_numel = shape.numel()
         | 
| 325 | 
            +
                    total_numel += unpartitioned_numel
         | 
| 326 | 
            +
                    total_params += 1
         | 
| 327 | 
            +
             | 
| 328 | 
            +
                    partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
         | 
| 329 | 
            +
             | 
| 330 | 
            +
                    if debug:
         | 
| 331 | 
            +
                        print(
         | 
| 332 | 
            +
                            f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
         | 
| 333 | 
            +
                        )
         | 
| 334 | 
            +
             | 
| 335 | 
            +
                    # XXX: memory usage doubles here
         | 
| 336 | 
            +
                    state_dict[name] = torch.cat(
         | 
| 337 | 
            +
                        tuple(fp32_flat_groups[i].narrow(0,
         | 
| 338 | 
            +
                                                         offset,
         | 
| 339 | 
            +
                                                         partitioned_numel)
         | 
| 340 | 
            +
                              for i in range(world_size)),
         | 
| 341 | 
            +
                        0).narrow(0,
         | 
| 342 | 
            +
                                  0,
         | 
| 343 | 
            +
                                  unpartitioned_numel).view(shape)
         | 
| 344 | 
            +
                    offset += partitioned_numel
         | 
| 345 | 
            +
             | 
| 346 | 
            +
                offset *= world_size
         | 
| 347 | 
            +
             | 
| 348 | 
            +
                # Sanity check
         | 
| 349 | 
            +
                if offset != avail_numel:
         | 
| 350 | 
            +
                    raise ValueError(
         | 
| 351 | 
            +
                        f"consumed {offset} numels out of {avail_numel} - something is wrong")
         | 
| 352 | 
            +
             | 
| 353 | 
            +
                print(
         | 
| 354 | 
            +
                    f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
         | 
| 355 | 
            +
                )
         | 
| 356 | 
            +
             | 
| 357 | 
            +
                return state_dict
         | 
| 358 | 
            +
             | 
| 359 | 
            +
             | 
| 360 | 
            +
            def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
         | 
| 361 | 
            +
                """
         | 
| 362 | 
            +
                Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
         | 
| 363 | 
            +
                ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
         | 
| 364 | 
            +
                via a model hub.
         | 
| 365 | 
            +
             | 
| 366 | 
            +
                Args:
         | 
| 367 | 
            +
                    - ``checkpoint_dir``: path to the desired checkpoint folder
         | 
| 368 | 
            +
                    - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
         | 
| 369 | 
            +
             | 
| 370 | 
            +
                Returns:
         | 
| 371 | 
            +
                    - pytorch ``state_dict``
         | 
| 372 | 
            +
             | 
| 373 | 
            +
                Note: this approach may not work if your application doesn't have sufficient free CPU memory and
         | 
| 374 | 
            +
                you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
         | 
| 375 | 
            +
                the checkpoint.
         | 
| 376 | 
            +
             | 
| 377 | 
            +
                A typical usage might be ::
         | 
| 378 | 
            +
             | 
| 379 | 
            +
                    from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
         | 
| 380 | 
            +
                    # do the training and checkpoint saving
         | 
| 381 | 
            +
                    state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
         | 
| 382 | 
            +
                    model = model.cpu() # move to cpu
         | 
| 383 | 
            +
                    model.load_state_dict(state_dict)
         | 
| 384 | 
            +
                    # submit to model hub or save the model to share with others
         | 
| 385 | 
            +
             | 
| 386 | 
            +
                In this example the ``model`` will no longer be usable in the deepspeed context of the same
         | 
| 387 | 
            +
                application. i.e. you will need to re-initialize the deepspeed engine, since
         | 
| 388 | 
            +
                ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
         | 
| 389 | 
            +
             | 
| 390 | 
            +
                If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
         | 
| 391 | 
            +
             | 
| 392 | 
            +
                """
         | 
| 393 | 
            +
                if tag is None:
         | 
| 394 | 
            +
                    latest_path = os.path.join(checkpoint_dir, 'latest')
         | 
| 395 | 
            +
                    if os.path.isfile(latest_path):
         | 
| 396 | 
            +
                        with open(latest_path, 'r') as fd:
         | 
| 397 | 
            +
                            tag = fd.read().strip()
         | 
| 398 | 
            +
                    else:
         | 
| 399 | 
            +
                        raise ValueError(f"Unable to find 'latest' file at {latest_path}")
         | 
| 400 | 
            +
             | 
| 401 | 
            +
                ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
         | 
| 402 | 
            +
             | 
| 403 | 
            +
                if not os.path.isdir(ds_checkpoint_dir):
         | 
| 404 | 
            +
                    raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
         | 
| 405 | 
            +
             | 
| 406 | 
            +
                return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
         | 
| 407 | 
            +
             | 
| 408 | 
            +
             | 
| 409 | 
            +
            def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
         | 
| 410 | 
            +
                """
         | 
| 411 | 
            +
                Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
         | 
| 412 | 
            +
                loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
         | 
| 413 | 
            +
             | 
| 414 | 
            +
                Args:
         | 
| 415 | 
            +
                    - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
         | 
| 416 | 
            +
                    - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
         | 
| 417 | 
            +
                    - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
         | 
| 418 | 
            +
                """
         | 
| 419 | 
            +
             | 
| 420 | 
            +
                state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
         | 
| 421 | 
            +
                print(f"Saving fp32 state dict to {output_file}")
         | 
| 422 | 
            +
                torch.save(state_dict, output_file)
         | 
| 423 | 
            +
             | 
| 424 | 
            +
             | 
| 425 | 
            +
            def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
         | 
| 426 | 
            +
                """
         | 
| 427 | 
            +
                1. Put the provided model to cpu
         | 
| 428 | 
            +
                2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
         | 
| 429 | 
            +
                3. Load it into the provided model
         | 
| 430 | 
            +
             | 
| 431 | 
            +
                Args:
         | 
| 432 | 
            +
                    - ``model``: the model object to update
         | 
| 433 | 
            +
                    - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
         | 
| 434 | 
            +
                    - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
         | 
| 435 | 
            +
             | 
| 436 | 
            +
                Returns:
         | 
| 437 | 
            +
                    - ``model`: modified model
         | 
| 438 | 
            +
             | 
| 439 | 
            +
                Make sure you have plenty of CPU memory available before you call this function. If you don't
         | 
| 440 | 
            +
                have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
         | 
| 441 | 
            +
                conveniently placed for you in the checkpoint folder.
         | 
| 442 | 
            +
             | 
| 443 | 
            +
                A typical usage might be ::
         | 
| 444 | 
            +
             | 
| 445 | 
            +
                    from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
         | 
| 446 | 
            +
                    model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
         | 
| 447 | 
            +
                    # submit to model hub or save the model to share with others
         | 
| 448 | 
            +
             | 
| 449 | 
            +
                Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
         | 
| 450 | 
            +
                of the same application. i.e. you will need to re-initialize the deepspeed engine, since
         | 
| 451 | 
            +
                ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
         | 
| 452 | 
            +
             | 
| 453 | 
            +
                """
         | 
| 454 | 
            +
                logger.info(f"Extracting fp32 weights")
         | 
| 455 | 
            +
                state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
         | 
| 456 | 
            +
             | 
| 457 | 
            +
                logger.info(f"Overwriting model with fp32 weights")
         | 
| 458 | 
            +
                model = model.cpu()
         | 
| 459 | 
            +
                model.load_state_dict(state_dict, strict=False)
         | 
| 460 | 
            +
             | 
| 461 | 
            +
                return model
         | 
| 462 | 
            +
             | 
| 463 | 
            +
             | 
| 464 | 
            +
            if __name__ == "__main__":
         | 
| 465 | 
            +
             | 
| 466 | 
            +
                parser = argparse.ArgumentParser()
         | 
| 467 | 
            +
                parser.add_argument(
         | 
| 468 | 
            +
                    "checkpoint_dir",
         | 
| 469 | 
            +
                    type=str,
         | 
| 470 | 
            +
                    help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
         | 
| 471 | 
            +
                parser.add_argument(
         | 
| 472 | 
            +
                    "output_file",
         | 
| 473 | 
            +
                    type=str,
         | 
| 474 | 
            +
                    help=
         | 
| 475 | 
            +
                    "path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
         | 
| 476 | 
            +
                )
         | 
| 477 | 
            +
                parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
         | 
| 478 | 
            +
                args = parser.parse_args()
         | 
| 479 | 
            +
             | 
| 480 | 
            +
                debug = args.debug
         | 
| 481 | 
            +
             | 
| 482 | 
            +
                convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)
         | 
