--- library_name: transformers tags: - mergekit - merge base_model: - bunnycore/QwQen-3B-LCoT - bunnycore/Qwen-2.5-3b-R1-lora_model-v.1 model-index: - name: QwQen-3B-LCoT-R1 results: - task: type: text-generation name: Text Generation dataset: name: IFEval (0-Shot) type: HuggingFaceH4/ifeval args: num_few_shot: 0 metrics: - type: inst_level_strict_acc and prompt_level_strict_acc value: 53.42 name: strict accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/QwQen-3B-LCoT-R1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: BBH (3-Shot) type: BBH args: num_few_shot: 3 metrics: - type: acc_norm value: 26.98 name: normalized accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/QwQen-3B-LCoT-R1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MATH Lvl 5 (4-Shot) type: hendrycks/competition_math args: num_few_shot: 4 metrics: - type: exact_match value: 33.53 name: exact match source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/QwQen-3B-LCoT-R1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GPQA (0-shot) type: Idavidrein/gpqa args: num_few_shot: 0 metrics: - type: acc_norm value: 1.57 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/QwQen-3B-LCoT-R1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MuSR (0-shot) type: TAUR-Lab/MuSR args: num_few_shot: 0 metrics: - type: acc_norm value: 10.03 name: acc_norm source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/QwQen-3B-LCoT-R1 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU-PRO (5-shot) type: TIGER-Lab/MMLU-Pro config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 30.26 name: accuracy source: url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=bunnycore/QwQen-3B-LCoT-R1 name: Open LLM Leaderboard --- When using the QwQen-3B-LCoT-R1 model, you might notice that it can sometimes produce repetitive outputs, especially in certain contexts or with specific prompts. This is a common behavior in language models, but don’t worry—it can be managed effectively by tweaking the model’s repetition parameters. ### To reduce repetition, you can experiment with the following settings: - Repetition Penalty: This parameter discourages the model from repeating the same words or phrases by applying a penalty. A higher value (e.g., 1.0) will push the model to avoid repetition more aggressively. - Temperature: This controls the randomness of the output. Lowering the temperature (e.g., 0.7) makes the model more focused and less likely to repeat itself, though it may reduce creativity slightly. ## System Prompt: ``` Think about the reasoning process in the mind first, then provide the answer. The reasoning process should be wrapped within tags, then provide the answer after that, i.e., reasoning process here answer here. ``` ### Configuration The following YAML configuration was used to produce this model: ```yaml base_model: bunnycore/QwQen-3B-LCoT+bunnycore/Qwen-2.5-3b-R1-lora_model-v.1 dtype: bfloat16 merge_method: passthrough models: - model: bunnycore/QwQen-3B-LCoT+bunnycore/Qwen-2.5-3b-R1-lora_model-v.1 tokenizer_source: bunnycore/QwQen-3B-LCoT ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/bunnycore__QwQen-3B-LCoT-R1-details) | Metric |Value| |-------------------|----:| |Avg. |25.97| |IFEval (0-Shot) |53.42| |BBH (3-Shot) |26.98| |MATH Lvl 5 (4-Shot)|33.53| |GPQA (0-shot) | 1.57| |MuSR (0-shot) |10.03| |MMLU-PRO (5-shot) |30.26|