File size: 9,769 Bytes
643b1fe
 
5b3d066
0a2f407
65b911f
 
50cc58f
 
02ca28f
 
 
 
50cc58f
 
 
65b911f
02ca28f
643b1fe
 
02ca28f
643b1fe
02ca28f
 
 
 
643b1fe
920ff52
 
 
 
 
02ca28f
 
643b1fe
02ca28f
643b1fe
02ca28f
643b1fe
02ca28f
 
 
94d91fc
02ca28f
 
 
 
 
e926275
02ca28f
643b1fe
e926275
 
02ca28f
643b1fe
f30ef71
e926275
02ca28f
249613c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
890b33e
249613c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02ca28f
643b1fe
02ca28f
643b1fe
02ca28f
643b1fe
756e8dd
643b1fe
890b33e
643b1fe
02ca28f
643b1fe
02ca28f
 
643b1fe
02ca28f
643b1fe
02ca28f
 
 
 
 
 
 
 
 
 
643b1fe
 
02ca28f
 
 
 
 
643b1fe
02ca28f
643b1fe
02ca28f
 
 
 
 
643b1fe
02ca28f
 
 
643b1fe
756e8dd
643b1fe
890b33e
643b1fe
02ca28f
643b1fe
02ca28f
 
643b1fe
02ca28f
 
 
 
643b1fe
02ca28f
 
643b1fe
02ca28f
 
643b1fe
02ca28f
 
643b1fe
02ca28f
 
 
 
643b1fe
02ca28f
 
 
643b1fe
02ca28f
643b1fe
02ca28f
 
643b1fe
02ca28f
 
643b1fe
02ca28f
 
 
 
643b1fe
02ca28f
 
643b1fe
02ca28f
 
 
643b1fe
02ca28f
643b1fe
02ca28f
643b1fe
02ca28f
643b1fe
02ca28f
643b1fe
94d91fc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae5d944
94d91fc
 
 
 
02ca28f
643b1fe
02ca28f
643b1fe
02ca28f
643b1fe
02ca28f
643b1fe
02ca28f
643b1fe
02ca28f
643b1fe
02ca28f
643b1fe
02ca28f
 
 
643b1fe
02ca28f
643b1fe
02ca28f
643b1fe
02ca28f
643b1fe
02ca28f
643b1fe
02ca28f
643b1fe
02ca28f
643b1fe
02ca28f
643b1fe
e926275
 
 
7e60984
e926275
7e60984
e926275
02ca28f
643b1fe
02ca28f
 
 
 
 
 
 
 
643b1fe
02ca28f
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
---
base_model: Qwen/Qwen2.5-Coder-1.5B-Instruct
base_model_relation: finetune
library_name: transformers
language:
- en
tags:
- code
- codeqwen
- chat
- qwen
- qwen-coder
license: gpl-3.0
datasets:
- bunyaminergen/Stable-Code-Python-SFT
pipeline_tag: text-generation
license_link: https://huggingface.co/bunyaminergen/Qwen2.5-Coder-1.5B-Instruct-SFT/blob/main/LICENSE
---

# Qwen2.5-Coder-1.5B-Instruct-SFT

The Qwen2.5-Coder-1.5B-Instruct-SFT model has been fine-tuned using Supervised Fine Tuning (SFT) method specifically to
enhance its performance in generating docstrings, a critical task in coding. Currently, it generates docstrings
following the Google style guide. For differences compared to the base (pre-trained) model, please refer to
the [Comparison](#comparison) section.

**Note**: _Since the model has only been supervised fine-tuned (SFT) for roughly 11 epochs and hasn't been enhanced with
reinforcement learning from human feedback (RLHF), it mostly generates docstrings in the Google Docstring style.
However, it might occasionally produce them in a different style. In such cases, you may need to regenerate the
docstrings once or multiple times._

**Note**: _If you would like to contribute to this repository,
please read the [CONTRIBUTING](CONTRIBUTING.md) first._

---

### TableofContents

- [Usage](#usage)
- [Comparison](#comparison)
- [Dataset](#dataset)
- [Training](#training)
- [Documentations](#documentations)
- [License](#licence)
- [Links](#links)
- [Team](#team)
- [Contact](#contact)
- [Reference](#reference)
- [Citation](#citation)

---

### Usage

#### Hugging Face

```python
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig

model_name = "bunyaminergen/Qwen2.5-Coder-1.5B-Instruct-SFT"

quant_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.bfloat16,
    bnb_4bit_use_double_quant=True,
    bnb_4bit_quant_type="nf4"
)

tokenizer = AutoTokenizer.from_pretrained(model_name)

model = AutoModelForCausalLM.from_pretrained(
    model_name,
    quantization_config=quant_config,
    device_map="auto"
)

model.eval()

messages = [
    {"role": "system", "content": "You are a senior Python developer."},
    {"role": "user", "content": "Give me a quick example of bubble sort in Python."}
]

prompt = tokenizer.apply_chat_template(
    messages,
    tokenize=False,
    add_generation_prompt=True
)

inputs = tokenizer(prompt, return_tensors="pt").to(model.device)

max_new_tokens = 512
temperature = 0.9

with torch.no_grad():
    outputs = model.generate(
        **inputs,
        max_new_tokens=max_new_tokens,
        temperature=temperature,
        do_sample=True,
        top_p=0.95,
        eos_token_id=tokenizer.eos_token_id,
        pad_token_id=tokenizer.eos_token_id
    )

result = tokenizer.decode(outputs[0], skip_special_tokens=True)

print(result)
```

---

### Comparison

#### Base Model

`System:` You are a senior Python developer..

`User:` Give me a quick an example of bubble sort in Python.

`Assistant:` Bubble Sort is a simple sorting algorithm that repeatedly steps through the list, compares adjacent
elements and swaps them if they are in the wrong order. The pass through the list is repeated until the list is sorted.

Here's a basic implementation of Bubble Sort in Python:

```python
def bubble_sort(arr):
    n = len(arr)
    # Traverse through all array elements
    for i in range(n):
        # Last i elements are already in place
        for j in range(0, n - i - 1):
            # Swap if the element found is greater than the next element
            if arr[j] > arr[j + 1]:
                arr[j], arr[j + 1] = arr[j + 1], arr[j]


# Example usage:
arr = [64, 34, 25, 12, 22, 11, 90]
bubble_sort(arr)
print("Sorted array:", arr)
```

In this example:

- We define a function `bubble_sort` that takes an array as input.
- Inside the function, we use two nested loops to iterate over each pair of adjacent elements in the array.
- If the current element (`arr[j]`) is greater than the next element (`arr[j+1]`), we swap them.
- This process continues until no more swaps are needed, indicating that the array is sorted.
- Finally, we demonstrate how to use the `bubble_sort` function by sorting an array and printing the sorted result.

Bubble Sort has a time complexity of O(n^2) in the worst case scenario, making it less efficient than other sorting
algorithms like QuickSort or MergeSort. However, it is easy to understand and implement, which makes it suitable for
small data sets or educational purposes.

#### Supervised Fine Tuned Model

`System:` You are a senior Python developer.

`User:` Give me a quick an example of bubble sort in Python.

`Assistant:`  Here's a simple implementation of the Bubble Sort algorithm in Python, along with its docstring following
Google Python Style Guide:

```python
def bubble_sort(arr):
    """
    Bubble sorts an array of integers in ascending order.

    Args:
        arr (list): A list of integers to be sorted.

    Returns:
        list: The sorted list of integers.

    Raises:
        TypeError: If the input is not a list or contains non-integer elements.

    Examples:
        >>> bubble_sort([5, 3, 1, 4, 6])
        [1, 3, 4, 5, 6]
    """

    # Check if the input is a list and contains only integers
    if not isinstance(arr, list) or not all(isinstance(x, int) for x in arr):
        raise TypeError("Input must be a list of integers.")

    n = len(arr)

    # Traverse through all array elements
    for i in range(n):

        # Last i elements are already in place
        for j in range(0, n - i - 1):

            # Traverse the array from 0 to n-i-1
            # Swap if the element found is greater than the next element
            if arr[j] > arr[j + 1]:
                arr[j], arr[j + 1] = arr[j + 1], arr[j]

    return arr
```

This implementation follows the Bubble Sort algorithm, which repeatedly steps through the list, compares adjacent
elements, and swaps them if they are in the wrong order. The pass through the list is repeated until the list is sorted.
This implementation includes error handling and examples for usage.

---

### Dataset

- [bunyaminergen/Stable-Code-Python-SFT](https://huggingface.co/datasets/bunyaminergen/Stable-Code-Python-SFT)

---

### Training

#### Hyperparameters

| Hyperparameter              | Value                                 |
|-----------------------------|---------------------------------------|
| Base Model                  | `Qwen/Qwen2.5-Coder-1.5B-Instruct`    |
| Fine-tuning Method          | QLoRA (Quantized Low-Rank Adaptation) |
| Task Type                   | `CAUSAL_LM`                           |
| Number of Epochs            | `11`                                  |
| Batch Size                  | `8`                                   |
| Gradient Accumulation Steps | `2`                                   |
| Effective Batch Size        | `16` (8 × 2)                          |
| Learning Rate               | `1e-4`                                |
| Optimizer                   | `AdamW`                               |
| Precision                   | `BF16 Mixed Precision`                |
| Evaluation Strategy         | `None`                                |
| Max Sequence Length         | `1024 tokens`                         |
| Logging Steps               | every `1000` steps                    |
| Save Checkpoint Steps       | every `7200` steps                    |
| Output Directory            | Overwritten per run                   |
| Experiment Tracking         | `MLflow` (local tracking)             |
| Experiment Name             | `AssistantFineTuning`                 |
| MLflow Run Name             | `AssistantFT`                         |

#### PEFT (QLoRA) Configuration

| Parameter       | Value                    |
|-----------------|--------------------------|
| LoRA Rank (`r`) | `16`                     |
| LoRA Alpha      | `32`                     |
| LoRA Dropout    | `0.05`                   |
| Target Modules  | `all-linear`             |
| Modules Saved   | `lm_head`, `embed_token` |

#### Dataset

- **Train/Test Split:** `90%/10%`
- **Random Seed:** `19`
- **Train Batched:** `True`
- **Eval Batched:** `True`

#### Tokenizer Configuration

- **Truncation:** Enabled (`max_length=1024`)
- **Masked Language Modeling (MLM):** `False`

#### Speeds, Sizes, Times

- **Total Training Time:** ~11 hours
- **Checkpoint Frequency:** every `7200` steps
- **Checkpoint Steps:**
    - `checkpoint-7200`
    - `checkpoint-14400`
    - `checkpoint-21600`
    - `checkpoint-28800`
    - `checkpoint-36000`
    - `checkpoint-39600` *(final checkpoint)*

#### Compute Infrastructure

**Hardware:**

- GPU: **1 × NVIDIA L40S (48 GB VRAM)**
- RAM: **62 GB**
- CPU: **16 vCPU**

**Software:**

- OS: **Ubuntu 22.04**
- Frameworks: **PyTorch 2.4.0**
- CUDA Version: **12.4.1**

---

### Documentations

- [CONTRIBUTING](CONTRIBUTING.md)

---

### Licence

- [LICENSE](LICENSE)

---

### Links

- [Github](https://github.com/bunyaminergen/)
- [Website](https://bunyaminergen.com)
- [Linkedin](https://www.linkedin.com/in/bunyaminergen)

---

### Team

- [Bunyamin Ergen](https://www.linkedin.com/in/bunyaminergen)

---

### Contact

- [Mail](mailto:[email protected])

---

### Reference

- This model has been fine-tuned using Supervised Fine Tuning (SFT) method from the original
  model [Qwen/Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct).

---

### Citation

```bibtex
@software{       Qwen2.5-Coder-1.5B-Instruct-SFT,
  author       = {Bunyamin Ergen},
  title        = {{Qwen2.5-Coder-1.5B-Instruct-SFT}},
  year         = {2025},
  month        = {04},
}
```

---