feat: add modeling code
Browse files- config.json +5 -1
- modeling_projector.py +162 -0
- modeling_valley.py +520 -0
- modeling_vision_tower.py +161 -0
- preprocessor_config.json +26 -0
- processing_valley.py +312 -0
- utils.py +251 -0
config.json
CHANGED
@@ -3,6 +3,11 @@
|
|
3 |
"architectures": [
|
4 |
"ValleyQwen2ForCausalLM"
|
5 |
],
|
|
|
|
|
|
|
|
|
|
|
6 |
"attention_dropout": 0.0,
|
7 |
"bos_token_id": 151643,
|
8 |
"eagle_vision_tower": "Qwen/Qwen2-VL-7B-Instruct",
|
@@ -32,7 +37,6 @@
|
|
32 |
"mm_vision_select_layer": -2,
|
33 |
"mm_vision_siglip_select_layer": -1,
|
34 |
"mm_vision_tower": "google/siglip-so400m-patch14-384",
|
35 |
-
"model_class": "valley-product",
|
36 |
"model_type": "valley",
|
37 |
"num_attention_heads": 28,
|
38 |
"num_hidden_layers": 28,
|
|
|
3 |
"architectures": [
|
4 |
"ValleyQwen2ForCausalLM"
|
5 |
],
|
6 |
+
"auto_map": {
|
7 |
+
"AutoConfig": "modeling_valley.ValleyConfig",
|
8 |
+
"AutoModel": "modeling_valley.ValleyQwen2ForCausalLM",
|
9 |
+
"AutoModelForCausalLM": "modeling_valley.ValleyQwen2ForCausalLM"
|
10 |
+
},
|
11 |
"attention_dropout": 0.0,
|
12 |
"bos_token_id": 151643,
|
13 |
"eagle_vision_tower": "Qwen/Qwen2-VL-7B-Instruct",
|
|
|
37 |
"mm_vision_select_layer": -2,
|
38 |
"mm_vision_siglip_select_layer": -1,
|
39 |
"mm_vision_tower": "google/siglip-so400m-patch14-384",
|
|
|
40 |
"model_type": "valley",
|
41 |
"num_attention_heads": 28,
|
42 |
"num_hidden_layers": 28,
|
modeling_projector.py
ADDED
@@ -0,0 +1,162 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
|
5 |
+
def build_vision_projector(config, delay_load=False, **kwargs):
|
6 |
+
projector_type = getattr(config, 'mm_projector_type', 'linear')
|
7 |
+
|
8 |
+
if projector_type == 'conv_adapter':
|
9 |
+
return ConvAdapter(config.mm_hidden_size, config.hidden_size, getattr(config, "mlp_hidden_dim", None))
|
10 |
+
elif projector_type == 'mlp_pixel_shuffle':
|
11 |
+
return MlpPixelShuffle(config.mm_hidden_size, config.hidden_size,
|
12 |
+
config.pixelshuffle_downsample_ratio, getattr(config, "mlp_hidden_dim", None))
|
13 |
+
elif projector_type == 'ovis_conv_adapter':
|
14 |
+
return OvisConvAdapter(config.mm_hidden_size, config.hidden_size, getattr(config, "mlp_hidden_dim", 32000),
|
15 |
+
getattr(config, "tokenize_function", "softmax"))
|
16 |
+
raise ValueError(f'Unknown projector type: {projector_type}')
|
17 |
+
|
18 |
+
|
19 |
+
class ConvAdapter(nn.Module):
|
20 |
+
def __init__(self, dim_in, dim_out, mlp_hidden_dim=None):
|
21 |
+
super().__init__()
|
22 |
+
self.mm_projector_type = 'conv_adapter'
|
23 |
+
if mlp_hidden_dim is None:
|
24 |
+
self.mlp = nn.Sequential(
|
25 |
+
nn.Linear(dim_in, dim_out),
|
26 |
+
nn.GELU(),
|
27 |
+
nn.Linear(dim_out, dim_out)
|
28 |
+
)
|
29 |
+
else:
|
30 |
+
self.mlp = nn.Sequential(
|
31 |
+
nn.Linear(dim_in, mlp_hidden_dim),
|
32 |
+
nn.GELU(),
|
33 |
+
nn.Linear(mlp_hidden_dim, dim_out)
|
34 |
+
)
|
35 |
+
self.conv = nn.Conv2d(dim_out, dim_out, kernel_size=(3, 3), stride=(2, 2), padding=1)
|
36 |
+
|
37 |
+
def forward(self, x):
|
38 |
+
"""
|
39 |
+
Args:
|
40 |
+
x (torch.Tensor): image features
|
41 |
+
shape (F, v, D)
|
42 |
+
Returns:
|
43 |
+
shape (F, n, D) where n is token_num that has been reduced
|
44 |
+
"""
|
45 |
+
x = self.mlp(x)
|
46 |
+
|
47 |
+
f, v, d = x.shape
|
48 |
+
s = int(math.sqrt(v - 1))
|
49 |
+
x = x[:, 1:, :] # remove cls_token
|
50 |
+
x = x.reshape(f, s, s, d).permute([0, 3, 1, 2])
|
51 |
+
x = self.conv(x)
|
52 |
+
x = x.permute([0, 2, 3, 1]).reshape(f, -1, d)
|
53 |
+
return x
|
54 |
+
|
55 |
+
|
56 |
+
class MlpPixelShuffle(nn.Module):
|
57 |
+
def __init__(self, dim_in, dim_out, pixelshuffle_downsample_ratio, mlp_hidden_dim=None):
|
58 |
+
super().__init__()
|
59 |
+
self.mm_projector_type = 'mlp_pixel_shuffle'
|
60 |
+
if mlp_hidden_dim is None:
|
61 |
+
self.mlp = nn.Sequential(
|
62 |
+
nn.Linear(int(dim_in * (pixelshuffle_downsample_ratio ** 2)), dim_out),
|
63 |
+
nn.GELU(),
|
64 |
+
nn.Linear(dim_out, dim_out)
|
65 |
+
)
|
66 |
+
else:
|
67 |
+
self.mlp = nn.Sequential(
|
68 |
+
nn.Linear(int(dim_in * (pixelshuffle_downsample_ratio ** 2)), mlp_hidden_dim),
|
69 |
+
nn.GELU(),
|
70 |
+
nn.Linear(mlp_hidden_dim, dim_out)
|
71 |
+
)
|
72 |
+
self.scale_factor = pixelshuffle_downsample_ratio
|
73 |
+
|
74 |
+
def pixel_shuffle(self, x, scale_factor=2):
|
75 |
+
# change scale_factor from float to int
|
76 |
+
|
77 |
+
n, w, h, c = x.size()
|
78 |
+
# N, W, H, C --> N, W, H / scale, C * scale
|
79 |
+
x = x.view(n, w, int(h / scale_factor), int(c * scale_factor))
|
80 |
+
# N, W, H / scale, C * scale --> N, H / scale, W, C * scale
|
81 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
82 |
+
# N, H / scale, W, C * scale --> N, H / scale, W / scale, C * (scale ** 2)
|
83 |
+
x = x.view(n, int(h / scale_factor), int(w / scale_factor),
|
84 |
+
int(c * (scale_factor * scale_factor)))
|
85 |
+
|
86 |
+
x = x.permute(0, 2, 1, 3).contiguous()
|
87 |
+
|
88 |
+
return x
|
89 |
+
|
90 |
+
def forward(self, x):
|
91 |
+
"""
|
92 |
+
Args:
|
93 |
+
x (torch.Tensor): image features
|
94 |
+
shape (F, v, D)
|
95 |
+
Returns:
|
96 |
+
shape (F, n, D) where n is token_num that has been reduced
|
97 |
+
"""
|
98 |
+
x = x[:, 1:, :] # remove cls_token
|
99 |
+
h = w = int(x.shape[1] ** 0.5)
|
100 |
+
x = x.view(x.shape[0], h, w, -1)
|
101 |
+
x = self.pixel_shuffle(x, self.scale_factor)
|
102 |
+
x = self.mlp(x)
|
103 |
+
x = x.view(x.shape[0],-1,x.shape[-1])
|
104 |
+
return x
|
105 |
+
|
106 |
+
|
107 |
+
class OvisConvAdapter(nn.Module):
|
108 |
+
def __init__(self, dim_in, dim_out, vocab_size, tokenize_function="softmax"):
|
109 |
+
super().__init__()
|
110 |
+
self.mm_projector_type = 'ovis_conv_adapter'
|
111 |
+
self.conv = nn.Conv2d(dim_in, dim_in, kernel_size=(3, 3), stride=(2, 2), padding=1)
|
112 |
+
self.mlp = torch.nn.Sequential(
|
113 |
+
torch.nn.Linear(dim_in, vocab_size, bias=False),
|
114 |
+
torch.nn.LayerNorm(vocab_size)
|
115 |
+
)
|
116 |
+
self.embedding = torch.nn.Embedding(vocab_size, dim_out)
|
117 |
+
self.tokenize_function = tokenize_function
|
118 |
+
|
119 |
+
def tokenize(self, logits):
|
120 |
+
def st_argmax(y_soft, dim): # straight-through softmax
|
121 |
+
index = y_soft.max(dim, keepdim=True)[1]
|
122 |
+
y_hard = torch.zeros_like(y_soft, memory_format=torch.legacy_contiguous_format).scatter_(dim, index, 1.0)
|
123 |
+
ret = y_hard - y_soft.detach() + y_soft
|
124 |
+
return ret
|
125 |
+
|
126 |
+
if self.tokenize_function == 'softmax':
|
127 |
+
tokens = torch.nn.functional.softmax(logits, dim=-1)
|
128 |
+
elif self.tokenize_function == 'gumbel_argmax':
|
129 |
+
tokens = torch.nn.functional.gumbel_softmax(logits, tau=self.config.tau, hard=True)
|
130 |
+
elif self.tokenize_function == 'st_argmax':
|
131 |
+
tokens = st_argmax(logits, dim=-1)
|
132 |
+
else:
|
133 |
+
raise ValueError(
|
134 |
+
'Invalid `max_type`, expected softmax or gumbel_argmax or st_argmax,'
|
135 |
+
f' but got {self.config.tokenize_function}'
|
136 |
+
)
|
137 |
+
return tokens
|
138 |
+
|
139 |
+
def forward(self, x):
|
140 |
+
"""
|
141 |
+
Args:
|
142 |
+
x (torch.Tensor): image features
|
143 |
+
shape (F, v, D)
|
144 |
+
Returns:
|
145 |
+
shape (F, n, D) where n is token_num that has been reduced
|
146 |
+
"""
|
147 |
+
# conv
|
148 |
+
f, v, d = x.shape
|
149 |
+
s = int(math.sqrt(v - 1))
|
150 |
+
x = x[:, 1:, :] # remove cls_token
|
151 |
+
x = x.reshape(f, s, s, d).permute([0, 3, 1, 2])
|
152 |
+
x = self.conv(x)
|
153 |
+
x = x.permute([0, 2, 3, 1]).reshape(f, -1, d)
|
154 |
+
|
155 |
+
# tokenize
|
156 |
+
logits = self.mlp(x)
|
157 |
+
visual_tokens = self.tokenize(logits)
|
158 |
+
|
159 |
+
# get embeddings
|
160 |
+
out = torch.matmul(visual_tokens, self.embedding.weight)
|
161 |
+
|
162 |
+
return out
|
modeling_valley.py
ADDED
@@ -0,0 +1,520 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import torch
|
16 |
+
import numpy as np
|
17 |
+
from torch import nn
|
18 |
+
from torch.nn import CrossEntropyLoss
|
19 |
+
from abc import ABC, abstractmethod
|
20 |
+
from typing import List, Optional, Tuple, Union
|
21 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
22 |
+
from transformers import AutoConfig, AutoModelForCausalLM, Qwen2Config, Qwen2ForCausalLM, Qwen2Model
|
23 |
+
|
24 |
+
from .modeling_vision_tower import build_vision_tower
|
25 |
+
from .modeling_projector import build_vision_projector
|
26 |
+
from .utils import get_anyres_image_grid_shape, unpad_image, IGNORE_INDEX, IMAGE_TOKEN_INDEX
|
27 |
+
|
28 |
+
|
29 |
+
class ValleyConfig(Qwen2Config):
|
30 |
+
model_type = "valley"
|
31 |
+
|
32 |
+
class ValleyMetaModel:
|
33 |
+
def __init__(self, config):
|
34 |
+
super(ValleyMetaModel, self).__init__(config)
|
35 |
+
# Build vision tower
|
36 |
+
if hasattr(config, "mm_vision_tower"):
|
37 |
+
if getattr(config, "eagle_vision_tower", None) is not None:
|
38 |
+
self.vision_tower, self.qwen2vl_vision_tower = build_vision_tower(config, delay_load=False)
|
39 |
+
else:
|
40 |
+
self.vision_tower = build_vision_tower(config, delay_load=False)
|
41 |
+
# Build Projector
|
42 |
+
if hasattr(config, "mm_projector_type"):
|
43 |
+
self.mm_projector = build_vision_projector(config)
|
44 |
+
|
45 |
+
def get_vision_tower(self):
|
46 |
+
vision_tower = getattr(self, "vision_tower", None)
|
47 |
+
if getattr(self.config, "eagle_vision_tower", None) is not None:
|
48 |
+
qwen2vl_vision_tower = getattr(self, "qwen2vl_vision_tower", None)
|
49 |
+
return vision_tower, qwen2vl_vision_tower
|
50 |
+
else:
|
51 |
+
return vision_tower
|
52 |
+
|
53 |
+
class ValleyMetaForCausalLM(ABC):
|
54 |
+
@abstractmethod
|
55 |
+
def get_model(self):
|
56 |
+
pass
|
57 |
+
|
58 |
+
def get_vision_tower(self):
|
59 |
+
return self.get_model().get_vision_tower()
|
60 |
+
|
61 |
+
def split_by_instance(self, original_list, split_sizes):
|
62 |
+
start = 0
|
63 |
+
sub_lists = []
|
64 |
+
for size in split_sizes:
|
65 |
+
end = start + size
|
66 |
+
sub_list = original_list[start:end]
|
67 |
+
sub_lists.append([x.to(self.device) for x in sub_list])
|
68 |
+
start = end
|
69 |
+
return sub_lists
|
70 |
+
|
71 |
+
def encode_images_qwen2vl(self, pixel_values = None, grid_thw = None, split_sizes=None):
|
72 |
+
_, qwen2vl_vision_tower = self.get_model().get_vision_tower()
|
73 |
+
qwen2vl_image_features = qwen2vl_vision_tower(pixel_values, grid_thw)
|
74 |
+
qwen2vl_image_split_sizes = torch.prod(grid_thw[:, 1:3]//2, dim=1)
|
75 |
+
qwen2vl_image_features = torch.split(qwen2vl_image_features, qwen2vl_image_split_sizes.tolist(), dim=0)
|
76 |
+
qwen2vl_image_features = self.split_by_instance(qwen2vl_image_features, split_sizes)
|
77 |
+
return qwen2vl_image_features
|
78 |
+
|
79 |
+
def encode_images(self, images = None, split_sizes = None):
|
80 |
+
"""
|
81 |
+
images: (if not anyres) images.shape = [n,3,336,336] , n = number of images + (number of video) * 8
|
82 |
+
images: (if anyres) images.shape = [n,3,336,336] , n = number of tiles * number of images
|
83 |
+
"""
|
84 |
+
if getattr(self.config, "eagle_vision_tower", None) is not None:
|
85 |
+
siglip_vision_tower, _ = self.get_model().get_vision_tower()
|
86 |
+
image_features = siglip_vision_tower(images)
|
87 |
+
image_features = self.get_model().mm_projector(image_features)
|
88 |
+
else:
|
89 |
+
image_features = self.get_model().get_vision_tower()(images)
|
90 |
+
image_features = self.get_model().mm_projector(image_features)
|
91 |
+
|
92 |
+
if getattr(self.config,'anyres', False) and getattr(self.config, 'max_vision_token', None) is not None:
|
93 |
+
assert split_sizes is not None
|
94 |
+
image_features = list(torch.split(image_features, split_sizes, dim=0))
|
95 |
+
for i, image_feature in enumerate(image_features):
|
96 |
+
hidden_dim = image_feature.shape[-1]
|
97 |
+
image_tokens = image_feature.shape[0]*image_feature.shape[1]
|
98 |
+
if getattr(self.config, "eagle_vision_tower", None) is not None:
|
99 |
+
pass # the max_vision_token will be processed in the unpad image token part
|
100 |
+
else:
|
101 |
+
if image_tokens > self.config.max_vision_token:
|
102 |
+
intput_shape = int((image_feature.shape[1])**0.5)
|
103 |
+
output_shape = int((self.config.max_vision_token/image_feature.shape[0])**0.5)
|
104 |
+
image_feature = image_feature.view(image_feature.shape[0],intput_shape, intput_shape, -1).permute(0,3,1,2)
|
105 |
+
m = nn.AdaptiveAvgPool2d(output_shape) # different from roi pooling, but in square image, it seems the same
|
106 |
+
pooling_feature = m(image_feature).permute(0,2,3,1)
|
107 |
+
image_features[i] = pooling_feature.view(image_feature.shape[0], -1, hidden_dim)
|
108 |
+
split_sizes = None # have already split, set the flag
|
109 |
+
|
110 |
+
if getattr(self.config, 'mm_use_im_start_end', False):
|
111 |
+
raise ValueError('mm_use_im_start is not support')
|
112 |
+
if split_sizes is not None:
|
113 |
+
image_features = torch.split(image_features, split_sizes, dim=0)
|
114 |
+
|
115 |
+
return image_features
|
116 |
+
|
117 |
+
|
118 |
+
def prepare_inputs_labels_for_multimodal(
|
119 |
+
self, input_ids, position_ids, attention_mask, past_key_values, labels, images,
|
120 |
+
image_sizes, pixel_values, pixel_values_videos, image_grid_thw, video_grid_thw):
|
121 |
+
|
122 |
+
vision_tower = self.get_vision_tower()
|
123 |
+
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
124 |
+
if past_key_values is not None and vision_tower is not None and images is not None and input_ids.shape[1] == 1:
|
125 |
+
target_shape = past_key_values[-1][-1].shape[-2] + 1
|
126 |
+
attention_mask = torch.cat((attention_mask, torch.ones(
|
127 |
+
(attention_mask.shape[0], target_shape - attention_mask.shape[1]),
|
128 |
+
dtype=attention_mask.dtype,
|
129 |
+
device=attention_mask.device
|
130 |
+
)), dim=1)
|
131 |
+
position_ids = torch.sum(attention_mask, dim=1).unsqueeze(-1) - 1
|
132 |
+
return input_ids, position_ids, attention_mask, past_key_values, None, labels
|
133 |
+
|
134 |
+
# Step1: Get image embedings
|
135 |
+
if type(images) is list or images.ndim == 5:
|
136 |
+
# Without slicing the image
|
137 |
+
if not getattr(self.config,'anyres', False):
|
138 |
+
concat_images = torch.cat([image for image in images], dim=0) # to do batch compute
|
139 |
+
split_sizes = [image.shape[0] for image in images]
|
140 |
+
|
141 |
+
# Get vision tower feature, check whether only use navit firstly
|
142 |
+
if getattr(self.config, 'eagle_vision_tower', None) is not None and getattr(self.config, 'only_navit', False):
|
143 |
+
image_features = None
|
144 |
+
else:
|
145 |
+
image_features = self.encode_images(concat_images, split_sizes)
|
146 |
+
image_features = [x.to(self.device) for x in image_features]
|
147 |
+
|
148 |
+
# Get Eagle features
|
149 |
+
if getattr(self.config, 'eagle_vision_tower', None) is not None:
|
150 |
+
if pixel_values is not None:
|
151 |
+
qwen2vl_image_features = self.encode_images_qwen2vl(pixel_values, image_grid_thw, split_sizes)
|
152 |
+
elif pixel_values_videos is not None:
|
153 |
+
qwen2vl_image_features = self.encode_images_qwen2vl(pixel_values_videos, video_grid_thw, split_sizes)
|
154 |
+
else:
|
155 |
+
qwen2vl_image_features = None
|
156 |
+
|
157 |
+
# Slicing the image, each image contains some sub_images:
|
158 |
+
# images = [
|
159 |
+
# [image1_tiles(n1,3,336,336), image2_tiles(n2,3,336,336), ...],
|
160 |
+
# [image1_tiles(n1,3,336,336), image2_tiles(n2,3,336,336), ...], ...
|
161 |
+
# ]
|
162 |
+
else:
|
163 |
+
split_sizes = [len(image) for image in images]
|
164 |
+
# Get Eagle features
|
165 |
+
if getattr(self.config, "eagle_vision_tower", None) is not None:
|
166 |
+
if pixel_values is not None:
|
167 |
+
qwen2vl_image_features = self.encode_images_qwen2vl(pixel_values, image_grid_thw, split_sizes)
|
168 |
+
elif pixel_values_videos is not None:
|
169 |
+
qwen2vl_image_features = self.encode_images_qwen2vl(pixel_values_videos, video_grid_thw, split_sizes)
|
170 |
+
else:
|
171 |
+
qwen2vl_image_features = None
|
172 |
+
|
173 |
+
# Get vision tower feature, check whether only use navit firstly
|
174 |
+
if getattr(self.config, 'eagle_vision_tower', None) is not None and getattr(self.config, 'only_navit', False):
|
175 |
+
image_features = None
|
176 |
+
else:
|
177 |
+
image_features = []
|
178 |
+
all_concat_images = []
|
179 |
+
all_split_sizes = []
|
180 |
+
for batch_images in images:
|
181 |
+
concat_images = torch.cat([image for image in batch_images], dim=0) # to do batch compute
|
182 |
+
split_sizes = [image.shape[0] for image in batch_images]
|
183 |
+
all_concat_images.append(concat_images)
|
184 |
+
all_split_sizes.append(split_sizes)
|
185 |
+
all_image_features = self.encode_images(images=torch.cat(all_concat_images, dim=0), split_sizes=sum(all_split_sizes, []))
|
186 |
+
|
187 |
+
idx = 0
|
188 |
+
for split_sizes in all_split_sizes:
|
189 |
+
batch_image_features = all_image_features[idx:idx+len(split_sizes)]
|
190 |
+
idx += len(split_sizes)
|
191 |
+
if type(batch_image_features[0]) is list:
|
192 |
+
batch_image_features = [torch.cat(x).to(self.device) for x in batch_image_features]
|
193 |
+
else:
|
194 |
+
batch_image_features = [x.view(-1,x.shape[-1]).to(self.device) for x in batch_image_features] # tiles feature need to flatten in token dimention, [n_tiles, T, d] -> [n_tiles * T, d]
|
195 |
+
image_features.append(batch_image_features)
|
196 |
+
|
197 |
+
if getattr(self.config, "eagle_vision_tower", None) is not None and getattr(self.config, 'only_navit', False) == False:
|
198 |
+
# unpad image tokens
|
199 |
+
height = width = self.config.num_patches_per_side
|
200 |
+
new_image_features = []
|
201 |
+
for batch_image_features, batch_image_sizes in zip(image_features, image_sizes):
|
202 |
+
batch_image_features_list = []
|
203 |
+
for cur_image_feature, cur_image_size in zip(batch_image_features, batch_image_sizes):
|
204 |
+
base_image_feature = cur_image_feature[:width*height, :]
|
205 |
+
image_feature = cur_image_feature[width*height:, :]
|
206 |
+
if image_feature.shape[0] != 0:
|
207 |
+
num_patch_width, num_patch_height = get_anyres_image_grid_shape(
|
208 |
+
cur_image_size,
|
209 |
+
self.config.grid_pinpoints,
|
210 |
+
self.config.vit_crop_size
|
211 |
+
)
|
212 |
+
image_feature = image_feature.view(num_patch_height, num_patch_width, height, width, -1) # (num_patch_H, num_patch_W, H, W, C)
|
213 |
+
image_feature = image_feature.permute(4, 0, 2, 1, 3).contiguous() # (C, num_patch_H, H, num_patch_W, W)
|
214 |
+
image_feature = image_feature.flatten(1, 2).flatten(2, 3) # (C, num_token_H, num_token_W)
|
215 |
+
image_feature = unpad_image(image_feature, cur_image_size) # (C, num_token_H_unpad, num_token_W_unpad)
|
216 |
+
input_shape = (image_feature.shape[-2], image_feature.shape[-1])
|
217 |
+
subimage_tokens = np.prod(input_shape)
|
218 |
+
|
219 |
+
# adaptive avg 2d pool for reducing token num
|
220 |
+
max_subimage_tokens = self.config.max_vision_token-width*height
|
221 |
+
if subimage_tokens > max_subimage_tokens:
|
222 |
+
aspect_ratio = input_shape[0] / input_shape[1]
|
223 |
+
output_shape = (
|
224 |
+
int((max_subimage_tokens/aspect_ratio)**0.5*aspect_ratio),
|
225 |
+
int((max_subimage_tokens/aspect_ratio)**0.5)
|
226 |
+
)
|
227 |
+
m = nn.AdaptiveAvgPool2d(output_shape)
|
228 |
+
image_feature = m(image_feature)
|
229 |
+
image_feature = image_feature.flatten(1, 2).transpose(0, 1)
|
230 |
+
image_feature = torch.cat((base_image_feature, image_feature), dim=0)
|
231 |
+
else:
|
232 |
+
image_feature = cur_image_feature
|
233 |
+
batch_image_features_list.append(image_feature)
|
234 |
+
new_image_features.append(batch_image_features_list)
|
235 |
+
|
236 |
+
image_features = new_image_features
|
237 |
+
|
238 |
+
else:
|
239 |
+
image_features = self.encode_images(images).to(self.device)
|
240 |
+
|
241 |
+
|
242 |
+
# Step2: Iterate through each sample in the batch, insert image embedings into input_embeds
|
243 |
+
# and filling labels, attention mask at the same time. Finally, get `new_input_embed`,
|
244 |
+
# `new_labels`, new_attention_mask`.
|
245 |
+
_labels = labels
|
246 |
+
_position_ids = position_ids
|
247 |
+
_attention_mask = attention_mask
|
248 |
+
if attention_mask is None:
|
249 |
+
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
|
250 |
+
if position_ids is None:
|
251 |
+
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
|
252 |
+
if labels is None:
|
253 |
+
labels = torch.full_like(input_ids, IGNORE_INDEX)
|
254 |
+
|
255 |
+
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask.bool())]
|
256 |
+
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask.bool())]
|
257 |
+
attention_mask = [cur_attention_mask[cur_attention_mask.bool()] for cur_attention_mask in attention_mask]
|
258 |
+
new_input_embeds = []
|
259 |
+
new_labels = []
|
260 |
+
new_attention_mask = []
|
261 |
+
|
262 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
263 |
+
cur_batch_image_idx = 0
|
264 |
+
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
|
265 |
+
|
266 |
+
# Step2-1: If this piece of data is pure text, then concat a dummy image to ensure the whole compute graph is same on all device
|
267 |
+
if num_images == 0:
|
268 |
+
if getattr(self.config, "eagle_vision_tower", None) is not None:
|
269 |
+
if getattr(self.config, 'only_navit', False):
|
270 |
+
cur_image_features = qwen2vl_image_features[batch_idx][cur_batch_image_idx]
|
271 |
+
else:
|
272 |
+
siglip_feat = image_features[batch_idx][cur_batch_image_idx]
|
273 |
+
try:
|
274 |
+
qwen2vl_feat = qwen2vl_image_features[batch_idx][cur_batch_image_idx]
|
275 |
+
cur_image_features = torch.cat((siglip_feat, qwen2vl_feat), dim=0)
|
276 |
+
except Exception as e:
|
277 |
+
print(e)
|
278 |
+
print("only siglip feature:", siglip_feat.shape)
|
279 |
+
cur_image_features = siglip_feat
|
280 |
+
else:
|
281 |
+
cur_image_features = image_features[batch_idx][cur_batch_image_idx]
|
282 |
+
cur_input_embeds_1 = self.get_model().embed_tokens(cur_input_ids)
|
283 |
+
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features.squeeze(0)[0:0]], dim=0)
|
284 |
+
new_input_embeds.append(cur_input_embeds)
|
285 |
+
new_labels.append(labels[batch_idx])
|
286 |
+
new_attention_mask.append(attention_mask[batch_idx])
|
287 |
+
cur_batch_image_idx += 1
|
288 |
+
continue
|
289 |
+
|
290 |
+
# Step2-2: Split input_ids, labels, attention_mask by IMAGE_TOKEN_INDEX
|
291 |
+
cur_input_ids_noim, cur_labels_noim, cur_attention_mask_noim = [], [], []
|
292 |
+
cur_labels = labels[batch_idx]
|
293 |
+
cur_attention_mask = attention_mask[batch_idx]
|
294 |
+
cur_img_attention_mask = [
|
295 |
+
attention_mask[batch_idx][i].item()
|
296 |
+
for i in torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist()
|
297 |
+
]
|
298 |
+
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
|
299 |
+
for i in range(len(image_token_indices) - 1):
|
300 |
+
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
|
301 |
+
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
|
302 |
+
cur_attention_mask_noim.append(cur_attention_mask[image_token_indices[i]+1:image_token_indices[i+1]])
|
303 |
+
split_sizes = [x.shape[0] for x in cur_labels_noim]
|
304 |
+
cur_input_embeds = self.get_model().embed_tokens(torch.cat(cur_input_ids_noim))
|
305 |
+
cur_input_embeds_no_im = list(torch.split(cur_input_embeds, split_sizes, dim=0))# get text features
|
306 |
+
|
307 |
+
# Step2-3: Insert image embedings
|
308 |
+
cur_new_input_embeds, cur_new_labels, cur_new_attention_mask = [], [], []
|
309 |
+
for i in range(num_images + 1): # to add multimodal feature internal the text feature
|
310 |
+
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
|
311 |
+
cur_new_labels.append(cur_labels_noim[i])
|
312 |
+
cur_new_attention_mask.append(cur_attention_mask_noim[i])
|
313 |
+
if i < num_images:
|
314 |
+
if getattr(self.config, "eagle_vision_tower", None) is not None:
|
315 |
+
if getattr(self.config, 'only_navit', False):
|
316 |
+
cur_image_features = qwen2vl_image_features[batch_idx][cur_batch_image_idx]
|
317 |
+
else:
|
318 |
+
siglip_feat = image_features[batch_idx][cur_batch_image_idx]
|
319 |
+
try:
|
320 |
+
qwen2vl_feat = qwen2vl_image_features[batch_idx][cur_batch_image_idx]
|
321 |
+
cur_image_features = torch.cat((siglip_feat, qwen2vl_feat), dim=0)
|
322 |
+
except Exception as e:
|
323 |
+
print(e)
|
324 |
+
print("only siglip feature:", siglip_feat.shape)
|
325 |
+
cur_image_features = siglip_feat
|
326 |
+
else:
|
327 |
+
cur_image_features = image_features[batch_idx][cur_batch_image_idx]
|
328 |
+
cur_batch_image_idx += 1
|
329 |
+
cur_new_input_embeds.append(cur_image_features)
|
330 |
+
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
|
331 |
+
cur_new_attention_mask.append(torch.full((cur_image_features.shape[0],), True, device=cur_attention_mask.device, dtype=cur_attention_mask.dtype))
|
332 |
+
|
333 |
+
# Step2-4: Concat image embedings and text embedings
|
334 |
+
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
|
335 |
+
cur_new_labels = torch.cat(cur_new_labels)
|
336 |
+
cur_new_attention_mask = torch.cat(cur_new_attention_mask)
|
337 |
+
new_input_embeds.append(cur_new_input_embeds)
|
338 |
+
new_labels.append(cur_new_labels)
|
339 |
+
new_attention_mask.append(cur_new_attention_mask)
|
340 |
+
|
341 |
+
# Step3: Truncate sequences to max length as image embeddings can make the sequence longer
|
342 |
+
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
|
343 |
+
if tokenizer_model_max_length is not None:
|
344 |
+
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
|
345 |
+
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
|
346 |
+
new_attention_mask = [x[:tokenizer_model_max_length] for x in new_attention_mask]
|
347 |
+
|
348 |
+
# Step4: Pad and stack input_embeds, labels, attention_mask
|
349 |
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
350 |
+
batch_size = len(new_input_embeds)
|
351 |
+
new_input_embeds_padded = []
|
352 |
+
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
|
353 |
+
new_attention_mask_padded = torch.zeros((batch_size, max_len), dtype=new_attention_mask[0].dtype, device=new_attention_mask[0].device)
|
354 |
+
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
|
355 |
+
|
356 |
+
for i, (cur_new_embed, cur_new_labels, cur_attention_mask) in enumerate(zip(new_input_embeds, new_labels, new_attention_mask)):
|
357 |
+
cur_len = cur_new_embed.shape[0]
|
358 |
+
# Right padding when inferencing
|
359 |
+
if not self.training and not getattr(self, "right_padding", None):
|
360 |
+
new_input_embeds_padded.append(torch.cat((
|
361 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
|
362 |
+
cur_new_embed
|
363 |
+
), dim=0))
|
364 |
+
if cur_len > 0:
|
365 |
+
new_labels_padded[i, -cur_len:] = cur_new_labels
|
366 |
+
new_attention_mask_padded[i, -cur_len:] = cur_attention_mask
|
367 |
+
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
368 |
+
|
369 |
+
# Left padding while training
|
370 |
+
else:
|
371 |
+
new_input_embeds_padded.append(torch.cat((
|
372 |
+
cur_new_embed,
|
373 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
|
374 |
+
), dim=0))
|
375 |
+
if cur_len > 0:
|
376 |
+
new_labels_padded[i, :cur_len] = cur_new_labels
|
377 |
+
new_attention_mask_padded[i, :cur_len] = cur_attention_mask
|
378 |
+
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
379 |
+
|
380 |
+
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
|
381 |
+
new_labels = new_labels_padded if _labels is not None else None
|
382 |
+
new_attention_mask = new_attention_mask_padded if _attention_mask is not None else None
|
383 |
+
if _position_ids is None:
|
384 |
+
position_ids = None
|
385 |
+
|
386 |
+
return None, position_ids, new_attention_mask, past_key_values, new_input_embeds, new_labels
|
387 |
+
|
388 |
+
|
389 |
+
class ValleyQwen2Model(ValleyMetaModel, Qwen2Model):
|
390 |
+
config_class = ValleyConfig
|
391 |
+
def __init__(self, config: Qwen2Config):
|
392 |
+
super(ValleyQwen2Model, self).__init__(config)
|
393 |
+
|
394 |
+
|
395 |
+
class ValleyQwen2ForCausalLM(Qwen2ForCausalLM, ValleyMetaForCausalLM):
|
396 |
+
config_class = ValleyConfig
|
397 |
+
|
398 |
+
def __init__(self, config):
|
399 |
+
super(Qwen2ForCausalLM, self).__init__(config)
|
400 |
+
self.model = ValleyQwen2Model(config)
|
401 |
+
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
|
402 |
+
self.post_init()
|
403 |
+
|
404 |
+
def get_model(self):
|
405 |
+
return self.model
|
406 |
+
|
407 |
+
def forward(
|
408 |
+
self,
|
409 |
+
input_ids: torch.LongTensor = None,
|
410 |
+
attention_mask: Optional[torch.Tensor] = None,
|
411 |
+
position_ids: Optional[torch.LongTensor] = None,
|
412 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
413 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
414 |
+
labels: Optional[torch.LongTensor] = None,
|
415 |
+
use_cache: Optional[bool] = None,
|
416 |
+
output_attentions: Optional[bool] = None,
|
417 |
+
output_hidden_states: Optional[bool] = None,
|
418 |
+
images: Optional[torch.FloatTensor] = None,
|
419 |
+
return_dict: Optional[bool] = None,
|
420 |
+
image_sizes: Optional[List[List[int]]] = None,
|
421 |
+
pixel_values: Optional[torch.Tensor] = None,
|
422 |
+
pixel_values_videos: Optional[torch.FloatTensor] = None,
|
423 |
+
image_grid_thw: Optional[torch.LongTensor] = None,
|
424 |
+
video_grid_thw: Optional[torch.LongTensor] = None,
|
425 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
426 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
427 |
+
output_hidden_states = (
|
428 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
429 |
+
)
|
430 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
431 |
+
|
432 |
+
if inputs_embeds is None:
|
433 |
+
(
|
434 |
+
input_ids,
|
435 |
+
position_ids,
|
436 |
+
attention_mask,
|
437 |
+
past_key_values,
|
438 |
+
inputs_embeds,
|
439 |
+
labels
|
440 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
441 |
+
input_ids,
|
442 |
+
position_ids,
|
443 |
+
attention_mask,
|
444 |
+
past_key_values,
|
445 |
+
labels,
|
446 |
+
images,
|
447 |
+
image_sizes,
|
448 |
+
pixel_values,
|
449 |
+
pixel_values_videos,
|
450 |
+
image_grid_thw,
|
451 |
+
video_grid_thw,
|
452 |
+
)
|
453 |
+
|
454 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
455 |
+
outputs = self.model(
|
456 |
+
input_ids=input_ids,
|
457 |
+
attention_mask=attention_mask,
|
458 |
+
position_ids=position_ids,
|
459 |
+
past_key_values=past_key_values,
|
460 |
+
inputs_embeds=inputs_embeds,
|
461 |
+
use_cache=use_cache,
|
462 |
+
output_attentions=output_attentions,
|
463 |
+
output_hidden_states=output_hidden_states,
|
464 |
+
return_dict=return_dict,
|
465 |
+
)
|
466 |
+
|
467 |
+
hidden_states = outputs[0]
|
468 |
+
logits = self.lm_head(hidden_states)
|
469 |
+
|
470 |
+
loss = None
|
471 |
+
if labels is not None:
|
472 |
+
# Shift so that tokens < n predict n
|
473 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
474 |
+
shift_labels = labels[..., 1:].contiguous()
|
475 |
+
loss_fct = CrossEntropyLoss(reduction='mean')
|
476 |
+
bs = shift_labels.shape[0]
|
477 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
478 |
+
loss = torch.stack([loss_fct(shift_logits[i], shift_labels[i]) for i in range(bs)])
|
479 |
+
|
480 |
+
if not return_dict:
|
481 |
+
output = (logits,) + outputs[1:]
|
482 |
+
return (loss,) + output if loss is not None else output
|
483 |
+
|
484 |
+
return CausalLMOutputWithPast(
|
485 |
+
loss=loss,
|
486 |
+
logits=logits,
|
487 |
+
past_key_values=outputs.past_key_values,
|
488 |
+
hidden_states=outputs.hidden_states,
|
489 |
+
attentions=outputs.attentions,
|
490 |
+
)
|
491 |
+
|
492 |
+
def prepare_inputs_for_generation(
|
493 |
+
self, input_ids, past_key_values=None, attention_mask=None, inputs_embeds=None, **kwargs
|
494 |
+
):
|
495 |
+
if past_key_values:
|
496 |
+
input_ids = input_ids[:, -1:]
|
497 |
+
|
498 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
499 |
+
if inputs_embeds is not None and past_key_values is None:
|
500 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
501 |
+
else:
|
502 |
+
model_inputs = {"input_ids": input_ids}
|
503 |
+
|
504 |
+
model_inputs.update(
|
505 |
+
{
|
506 |
+
"past_key_values": past_key_values,
|
507 |
+
"use_cache": kwargs.get("use_cache"),
|
508 |
+
"attention_mask": attention_mask,
|
509 |
+
"images": kwargs.get("images", None),
|
510 |
+
"image_sizes": kwargs.get("image_sizes", None),
|
511 |
+
"pixel_values": kwargs.get("pixel_values", None),
|
512 |
+
"pixel_values_videos": kwargs.get("pixel_values_videos", None),
|
513 |
+
"image_grid_thw": kwargs.get("image_grid_thw", None),
|
514 |
+
"video_grid_thw": kwargs.get("video_grid_thw", None),
|
515 |
+
}
|
516 |
+
)
|
517 |
+
return model_inputs
|
518 |
+
|
519 |
+
AutoConfig.register("valley", ValleyConfig)
|
520 |
+
AutoModelForCausalLM.register(ValleyConfig, ValleyQwen2ForCausalLM)
|
modeling_vision_tower.py
ADDED
@@ -0,0 +1,161 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from transformers.models.qwen2_vl.modeling_qwen2_vl import Qwen2VisionTransformerPretrainedModel
|
4 |
+
from transformers import PretrainedConfig
|
5 |
+
|
6 |
+
siglip_config = PretrainedConfig.from_dict(
|
7 |
+
{
|
8 |
+
"attention_dropout": 0.0,
|
9 |
+
"hidden_act": "gelu_pytorch_tanh",
|
10 |
+
"hidden_size": 1152,
|
11 |
+
"image_size": 384,
|
12 |
+
"intermediate_size": 4304,
|
13 |
+
"layer_norm_eps": 1e-06,
|
14 |
+
"model_type": "siglip_vision_model",
|
15 |
+
"num_attention_heads": 16,
|
16 |
+
"num_channels": 3,
|
17 |
+
"num_hidden_layers": 27,
|
18 |
+
"patch_size": 14,
|
19 |
+
}
|
20 |
+
)
|
21 |
+
|
22 |
+
qwen2vl_vit_config = PretrainedConfig.from_dict(
|
23 |
+
{
|
24 |
+
"depth": 32,
|
25 |
+
"embed_dim": 1280,
|
26 |
+
"hidden_act": "quick_gelu",
|
27 |
+
"hidden_size": 3584,
|
28 |
+
"in_channels": 3,
|
29 |
+
"in_chans": 3,
|
30 |
+
"mlp_ratio": 4,
|
31 |
+
"model_type": "qwen2_vl",
|
32 |
+
"num_heads": 16,
|
33 |
+
"patch_size": 14,
|
34 |
+
"spatial_merge_size": 2,
|
35 |
+
"spatial_patch_size": 14,
|
36 |
+
"temporal_patch_size": 2,
|
37 |
+
"_attn_implementation": "flash_attention_2",
|
38 |
+
"_attn_implementation_internal": "flash_attention_2"
|
39 |
+
}
|
40 |
+
)
|
41 |
+
|
42 |
+
def build_vision_tower(vision_tower_cfg, **kwargs):
|
43 |
+
vision_tower = getattr(vision_tower_cfg, "mm_vision_tower", getattr(vision_tower_cfg, "vision_tower", None))
|
44 |
+
if "siglip-so400m-patch14-384" in vision_tower:
|
45 |
+
# Eagle
|
46 |
+
if getattr(vision_tower_cfg, "eagle_vision_tower", None) is not None:
|
47 |
+
qwen2vl_vision_tower = Qwen2VisionTransformerPretrainedModel._from_config(qwen2vl_vit_config)
|
48 |
+
|
49 |
+
if getattr(vision_tower_cfg, "navit_merger_hidden_dim", None) is not None:
|
50 |
+
del qwen2vl_vision_tower.merger
|
51 |
+
qwen2vl_vision_tower.merger = CustomPatchMerger(
|
52 |
+
vision_tower_cfg.hidden_size,
|
53 |
+
context_dim=1280,
|
54 |
+
hidden_dim=getattr(vision_tower_cfg, "navit_merger_hidden_dim", None)
|
55 |
+
) # random initialize
|
56 |
+
qwen2vl_vision_tower.requires_grad_(False)
|
57 |
+
|
58 |
+
# If only use navit, delete siglip_vision_tower
|
59 |
+
if getattr(vision_tower_cfg, "only_navit", False):
|
60 |
+
siglip_vision_tower = None
|
61 |
+
else:
|
62 |
+
siglip_vision_tower = SigLipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
|
63 |
+
|
64 |
+
return siglip_vision_tower, qwen2vl_vision_tower
|
65 |
+
# Non-Eagle
|
66 |
+
else:
|
67 |
+
siglip_vision_tower = SigLipVisionTower(vision_tower, args=vision_tower_cfg, **kwargs)
|
68 |
+
return siglip_vision_tower
|
69 |
+
else:
|
70 |
+
raise ValueError(f"Unknown vision tower: {vision_tower}")
|
71 |
+
|
72 |
+
class SigLipVisionTower(nn.Module):
|
73 |
+
def __init__(self, vision_tower, args, delay_load=False, cache_dir="./cache_dir"):
|
74 |
+
super().__init__()
|
75 |
+
self.is_loaded = False
|
76 |
+
self.image_tower_name = vision_tower
|
77 |
+
self.select_layer = args.mm_vision_select_layer
|
78 |
+
self.select_feature = getattr(args, "mm_vision_select_feature", "patch")
|
79 |
+
self.cache_dir = cache_dir
|
80 |
+
|
81 |
+
if not delay_load:
|
82 |
+
self.load_model()
|
83 |
+
else:
|
84 |
+
from transformers import SiglipVisionModel
|
85 |
+
self.cfg_only = siglip_config
|
86 |
+
self.vision_tower = SiglipVisionModel._from_config(siglip_config) # dummy-load
|
87 |
+
|
88 |
+
def load_model(self):
|
89 |
+
from transformers import SiglipVisionModel
|
90 |
+
self.vision_tower = SiglipVisionModel._from_config(siglip_config)
|
91 |
+
self.vision_tower.requires_grad_(False)
|
92 |
+
self.is_loaded = True
|
93 |
+
|
94 |
+
def feature_select(self, image_forward_outs):
|
95 |
+
assert self.select_feature == "cls_patch"
|
96 |
+
image_features = torch.cat([image_forward_outs[:, :1, :], image_forward_outs], dim=1)
|
97 |
+
return image_features
|
98 |
+
|
99 |
+
def forward(self, images):
|
100 |
+
if type(images) is list:
|
101 |
+
image_features = []
|
102 |
+
for image in images:
|
103 |
+
image_forward_out = self.vision_tower(
|
104 |
+
image.to(device=self.device, dtype=self.dtype).unsqueeze(0),
|
105 |
+
output_hidden_states=True,
|
106 |
+
return_dict=True,
|
107 |
+
)
|
108 |
+
image_feature = self.feature_select(image_forward_out.last_hidden_state).to(image.dtype)
|
109 |
+
image_features.append(image_feature)
|
110 |
+
else:
|
111 |
+
image_forward_outs = self.vision_tower(
|
112 |
+
images.to(device=self.device, dtype=self.dtype),
|
113 |
+
output_hidden_states=True,
|
114 |
+
return_dict=True,
|
115 |
+
)
|
116 |
+
image_features = self.feature_select(image_forward_outs.last_hidden_state).to(images.dtype)
|
117 |
+
|
118 |
+
return image_features
|
119 |
+
|
120 |
+
@property
|
121 |
+
def dummy_feature(self):
|
122 |
+
return torch.zeros(1, self.hidden_size, device=self.device, dtype=self.dtype)
|
123 |
+
|
124 |
+
@property
|
125 |
+
def dtype(self):
|
126 |
+
return self.vision_tower.dtype
|
127 |
+
|
128 |
+
@property
|
129 |
+
def device(self):
|
130 |
+
return self.vision_tower.device
|
131 |
+
|
132 |
+
@property
|
133 |
+
def config(self):
|
134 |
+
if self.is_loaded:
|
135 |
+
return self.vision_tower.config
|
136 |
+
else:
|
137 |
+
return self.cfg_only
|
138 |
+
|
139 |
+
@property
|
140 |
+
def hidden_size(self):
|
141 |
+
return self.config.hidden_size
|
142 |
+
|
143 |
+
@property
|
144 |
+
def num_patches(self):
|
145 |
+
return (self.config.image_size // self.config.patch_size) ** 2
|
146 |
+
|
147 |
+
|
148 |
+
class CustomPatchMerger(nn.Module):
|
149 |
+
def __init__(self, dim: int, context_dim: int, hidden_dim: int, spatial_merge_size: int = 2) -> None:
|
150 |
+
super().__init__()
|
151 |
+
self.input_dim = context_dim * (spatial_merge_size**2)
|
152 |
+
self.ln_q = nn.LayerNorm(context_dim, eps=1e-6)
|
153 |
+
self.mlp = nn.Sequential(
|
154 |
+
nn.Linear(self.input_dim, hidden_dim),
|
155 |
+
nn.GELU(),
|
156 |
+
nn.Linear(hidden_dim, dim),
|
157 |
+
)
|
158 |
+
|
159 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
160 |
+
x = self.mlp(self.ln_q(x).view(-1, self.input_dim))
|
161 |
+
return x
|
preprocessor_config.json
ADDED
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"processor_class": "ValleyProcessor",
|
3 |
+
"auto_map": {
|
4 |
+
"AutoProcessor": "processing_valley.ValleyProcessor"
|
5 |
+
},
|
6 |
+
"min_pixels": 1,
|
7 |
+
"qwen2vl_processor_config": {
|
8 |
+
"min_pixels": 3136,
|
9 |
+
"max_pixels": 12845056,
|
10 |
+
"patch_size": 14,
|
11 |
+
"temporal_patch_size": 2,
|
12 |
+
"merge_size": 2,
|
13 |
+
"image_mean": [
|
14 |
+
0.48145466,
|
15 |
+
0.4578275,
|
16 |
+
0.40821073
|
17 |
+
],
|
18 |
+
"image_std": [
|
19 |
+
0.26862954,
|
20 |
+
0.26130258,
|
21 |
+
0.27577711
|
22 |
+
],
|
23 |
+
"image_processor_type": "Qwen2VLImageProcessor",
|
24 |
+
"processor_class": "Qwen2VLProcessor"
|
25 |
+
}
|
26 |
+
}
|
processing_valley.py
ADDED
@@ -0,0 +1,312 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import re
|
2 |
+
import types
|
3 |
+
import io
|
4 |
+
import torch
|
5 |
+
from PIL import Image
|
6 |
+
from qwen_vl_utils import fetch_image
|
7 |
+
|
8 |
+
from transformers import (
|
9 |
+
ProcessorMixin,
|
10 |
+
SiglipImageProcessor,
|
11 |
+
BatchFeature,
|
12 |
+
Qwen2VLImageProcessor,
|
13 |
+
PreTrainedTokenizer
|
14 |
+
)
|
15 |
+
|
16 |
+
from .utils import (
|
17 |
+
process_anyres_image,
|
18 |
+
BLACK_IMG_ENV,
|
19 |
+
DEFAULT_IM_END_TOKEN,
|
20 |
+
DEFAULT_IM_START_TOKEN,
|
21 |
+
DEFAULT_IMAGE_TOKEN,
|
22 |
+
DEFAULT_VI_END_TOKEN,
|
23 |
+
DEFAULT_VI_START_TOKEN,
|
24 |
+
DEFAULT_VIDEO_TOKEN,
|
25 |
+
IMAGE_TOKEN_INDEX,
|
26 |
+
SEQ_MAX_LEN,
|
27 |
+
)
|
28 |
+
|
29 |
+
siglip_processor_config = {
|
30 |
+
"do_normalize": True,
|
31 |
+
"do_rescale": True,
|
32 |
+
"do_resize": True,
|
33 |
+
"image_mean": [
|
34 |
+
0.5,
|
35 |
+
0.5,
|
36 |
+
0.5
|
37 |
+
],
|
38 |
+
"image_processor_type": "SiglipImageProcessor",
|
39 |
+
"image_std": [
|
40 |
+
0.5,
|
41 |
+
0.5,
|
42 |
+
0.5
|
43 |
+
],
|
44 |
+
"processor_class": "SiglipProcessor",
|
45 |
+
"resample": 3,
|
46 |
+
"rescale_factor": 0.00392156862745098,
|
47 |
+
"size": {
|
48 |
+
"height": 384,
|
49 |
+
"width": 384
|
50 |
+
}
|
51 |
+
}
|
52 |
+
|
53 |
+
qwen2vl_processor_config = {
|
54 |
+
"min_pixels": 3136,
|
55 |
+
"max_pixels": 12845056,
|
56 |
+
"patch_size": 14,
|
57 |
+
"temporal_patch_size": 2,
|
58 |
+
"merge_size": 2,
|
59 |
+
"image_mean": [
|
60 |
+
0.48145466,
|
61 |
+
0.4578275,
|
62 |
+
0.40821073
|
63 |
+
],
|
64 |
+
"image_std": [
|
65 |
+
0.26862954,
|
66 |
+
0.26130258,
|
67 |
+
0.27577711
|
68 |
+
],
|
69 |
+
"image_processor_type": "Qwen2VLImageProcessor",
|
70 |
+
"processor_class": "Qwen2VLProcessor"
|
71 |
+
}
|
72 |
+
|
73 |
+
class ValleyProcessor(ProcessorMixin):
|
74 |
+
attributes = ["tokenizer"]
|
75 |
+
optional_attributes = [
|
76 |
+
"max_pixels",
|
77 |
+
"min_pixels",
|
78 |
+
"anyres",
|
79 |
+
"only_crop_single_image",
|
80 |
+
"grid_pinpoints",
|
81 |
+
"use_special_start_end_token",
|
82 |
+
]
|
83 |
+
tokenizer_class = "AutoTokenizer"
|
84 |
+
|
85 |
+
def __init__(self, tokenizer=None, **kwargs):
|
86 |
+
super().__init__(tokenizer, **kwargs)
|
87 |
+
self.black_img = BLACK_IMG_ENV
|
88 |
+
self.siglip_image_processor = SiglipImageProcessor.from_dict(siglip_processor_config)
|
89 |
+
self.qwen2vl_image_processor = Qwen2VLImageProcessor.from_dict(
|
90 |
+
qwen2vl_processor_config,
|
91 |
+
max_pixels=kwargs.get("max_pixels", 1280*28*28),
|
92 |
+
min_pixels=kwargs.get("min_pixels", 4*28*28)
|
93 |
+
)
|
94 |
+
|
95 |
+
self.anyres = kwargs.get("anyres", True)
|
96 |
+
self.grid_pinpoints = kwargs.get("grid_pinpoints", "(1x1),...,(3x3)")
|
97 |
+
self.only_crop_single_image = kwargs.get("only_crop_single_image", True)
|
98 |
+
self.use_special_start_end_token = kwargs.get("use_special_start_end_token", True)
|
99 |
+
|
100 |
+
def preprocess_images_siglip(self, images) -> torch.FloatTensor:
|
101 |
+
if isinstance(images[0], str):
|
102 |
+
images_pil = [Image.open(img).convert("RGB") for img in images]
|
103 |
+
elif isinstance(images[0], Image.Image):
|
104 |
+
images_pil = [img.convert("RGB") for img in images]
|
105 |
+
elif isinstance(images[0], bytes):
|
106 |
+
images_pil = [Image.open(io.BytesIO(img)).convert("RGB") for img in images]
|
107 |
+
else:
|
108 |
+
raise ValueError("unsupported type")
|
109 |
+
|
110 |
+
processed_images = []
|
111 |
+
have_multi_images = len(images_pil) > 1
|
112 |
+
for img in images_pil:
|
113 |
+
if self.anyres:
|
114 |
+
if not self.only_crop_single_image or not have_multi_images:
|
115 |
+
image = process_anyres_image(img, self.siglip_image_processor, self.grid_pinpoints)
|
116 |
+
else:
|
117 |
+
image = [self.siglip_image_processor(img, return_tensors="pt")["pixel_values"][0]]
|
118 |
+
else:
|
119 |
+
image = self.siglip_image_processor(img, return_tensors="pt")["pixel_values"][0]
|
120 |
+
|
121 |
+
processed_images.append(image)
|
122 |
+
|
123 |
+
if not self.anyres:
|
124 |
+
return torch.stack(processed_images, dim=0)
|
125 |
+
else:
|
126 |
+
return [torch.stack(img, dim=0) for img in processed_images]
|
127 |
+
|
128 |
+
def preprocess_images_qwen2vl(self, images) -> dict:
|
129 |
+
if isinstance(images[0], str):
|
130 |
+
images_pil = [Image.open(img).convert("RGB") for img in images]
|
131 |
+
elif isinstance(images[0], Image.Image):
|
132 |
+
images_pil = [img.convert("RGB") for img in images]
|
133 |
+
elif isinstance(images[0], bytes):
|
134 |
+
images_pil = [Image.open(io.BytesIO(img)).convert("RGB") for img in images]
|
135 |
+
else:
|
136 |
+
raise ValueError("unsupported type")
|
137 |
+
|
138 |
+
image_sizes = [[x.size for x in images_pil]]
|
139 |
+
data_dict_qwen2vl = self.qwen2vl_image_processor(
|
140 |
+
[fetch_image({"image": img}) for img in images_pil],
|
141 |
+
return_tensors="pt"
|
142 |
+
)
|
143 |
+
|
144 |
+
data_dict_qwen2vl["image_sizes"] = image_sizes
|
145 |
+
|
146 |
+
return data_dict_qwen2vl
|
147 |
+
|
148 |
+
def preprocess_multimodal(self, conversations, img_num):
|
149 |
+
for sentence in conversations:
|
150 |
+
if sentence["role"] == "system":
|
151 |
+
continue
|
152 |
+
if DEFAULT_VIDEO_TOKEN in sentence["content"]:
|
153 |
+
if self.use_special_start_end_token:
|
154 |
+
video_replace_token = (DEFAULT_VI_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_VI_END_TOKEN) * img_num
|
155 |
+
else:
|
156 |
+
video_replace_token = DEFAULT_IMAGE_TOKEN * img_num
|
157 |
+
sentence["content"] = sentence["content"].replace(DEFAULT_VIDEO_TOKEN, "").strip()
|
158 |
+
sentence["content"] = video_replace_token + "\n" + sentence["content"]
|
159 |
+
else:
|
160 |
+
segs = re.split(DEFAULT_IMAGE_TOKEN, sentence["content"])
|
161 |
+
if self.use_special_start_end_token:
|
162 |
+
sentence["content"] = (DEFAULT_IM_START_TOKEN + DEFAULT_IMAGE_TOKEN + DEFAULT_IM_END_TOKEN).join(
|
163 |
+
segs[: img_num + 1]
|
164 |
+
) + "".join(segs[img_num + 1 :])
|
165 |
+
else:
|
166 |
+
sentence["content"] = DEFAULT_IMAGE_TOKEN.join(segs[: img_num + 1]) + "".join(segs[img_num + 1 :])
|
167 |
+
|
168 |
+
return conversations
|
169 |
+
|
170 |
+
def preprocess_qwen2(
|
171 |
+
self,
|
172 |
+
conversations,
|
173 |
+
tokenizer: PreTrainedTokenizer,
|
174 |
+
has_image: bool = False,
|
175 |
+
inference: bool = False,
|
176 |
+
only_mask_system: bool = False,
|
177 |
+
) -> dict:
|
178 |
+
conv = types.SimpleNamespace(
|
179 |
+
system="You are a helpful assistant.",
|
180 |
+
roles=("user", "assistant"),
|
181 |
+
version="qwen2",
|
182 |
+
offset=0,
|
183 |
+
sep="<|im_start|>",
|
184 |
+
sep2="<|im_end|>\n",
|
185 |
+
)
|
186 |
+
|
187 |
+
# Check system prompt
|
188 |
+
assert conversations[0]["role"] == "system"
|
189 |
+
if conversations[0]["content"] == None:
|
190 |
+
conversations[0]["content"] = conv.system # use default system prompt
|
191 |
+
|
192 |
+
# Check conversation sequence
|
193 |
+
for j, sentence in enumerate(conversations[1:]):
|
194 |
+
role = sentence["role"]
|
195 |
+
assert role == conv.roles[j % 2], "The conversation sequence is incorrect."
|
196 |
+
|
197 |
+
conversation_str = tokenizer.apply_chat_template(conversations, tokenize=False, add_generation_prompt=inference)
|
198 |
+
|
199 |
+
# Mask targets
|
200 |
+
rounds = conversation_str.split(conv.sep2)
|
201 |
+
input_ids_ = torch.tensor([], dtype=torch.int64)
|
202 |
+
targets_ = torch.tensor([], dtype=torch.int64)
|
203 |
+
for i, rou in enumerate(rounds):
|
204 |
+
if rou == "":
|
205 |
+
continue
|
206 |
+
if (not inference) or (i < (len(rounds) - 1)):
|
207 |
+
rou += conv.sep2
|
208 |
+
if has_image:
|
209 |
+
cur_input_ids_ = self.tokenizer_image_token(rou, tokenizer, return_tensors='pt')
|
210 |
+
input_ids_ = torch.cat([input_ids_, cur_input_ids_], dim=0)
|
211 |
+
if only_mask_system:
|
212 |
+
mask_len = len(self.tokenizer_image_token(re.sub(rf'{conv.roles[0]}\n[\s\S]*', f'{conv.roles[0]}:', rou),
|
213 |
+
tokenizer))
|
214 |
+
else:
|
215 |
+
mask_len = len(self.tokenizer_image_token(re.sub(rf'{conv.roles[1]}\n[\s\S]*', f'{conv.roles[1]}:', rou),
|
216 |
+
tokenizer))
|
217 |
+
targets_ = torch.cat([targets_, torch.tensor([-100] * mask_len), cur_input_ids_[mask_len:]], dim=0)
|
218 |
+
else:
|
219 |
+
cur_input_ids_ = tokenizer(rou, return_tensors='pt')["input_ids"][0, :]
|
220 |
+
input_ids_ = torch.cat([input_ids_, cur_input_ids_], dim=0)
|
221 |
+
mask_len = len(tokenizer(re.sub(rf'{conv.roles[1]}\n[\s\S]*', rf'{conv.roles[1]}:', rou))["input_ids"][:])
|
222 |
+
targets_ = torch.cat([targets_, torch.tensor([-100] * mask_len), cur_input_ids_[mask_len:]], dim=0)
|
223 |
+
|
224 |
+
return {"input_ids": input_ids_, "labels": targets_}
|
225 |
+
|
226 |
+
|
227 |
+
def tokenizer_image_token(
|
228 |
+
self,
|
229 |
+
prompt,
|
230 |
+
tokenizer,
|
231 |
+
image_token_index=IMAGE_TOKEN_INDEX,
|
232 |
+
return_tensors=None,
|
233 |
+
):
|
234 |
+
def split_with_token(string, token):
|
235 |
+
result = string.split(token)
|
236 |
+
for i in range(len(result) - 1):
|
237 |
+
result.insert(i * 2 + 1, token)
|
238 |
+
return result
|
239 |
+
|
240 |
+
if len(prompt) > SEQ_MAX_LEN:
|
241 |
+
raise ValueError("sequence is too long !!!")
|
242 |
+
|
243 |
+
prompt_chunks = split_with_token(prompt, DEFAULT_IMAGE_TOKEN)
|
244 |
+
input_ids, offset = ([tokenizer.bos_token_id], 1) if getattr(tokenizer,'bos_token',None) else ([], 0)
|
245 |
+
token2index = {DEFAULT_IMAGE_TOKEN: image_token_index}
|
246 |
+
for chunk in prompt_chunks:
|
247 |
+
if chunk in token2index:
|
248 |
+
input_ids.append(token2index[chunk])
|
249 |
+
else:
|
250 |
+
chunk_ids = tokenizer(chunk).input_ids
|
251 |
+
if chunk_ids[0] != getattr(tokenizer,'bos_token_id', None):
|
252 |
+
offset = 0
|
253 |
+
input_ids.extend(chunk_ids[offset:])
|
254 |
+
|
255 |
+
if return_tensors is not None:
|
256 |
+
if return_tensors == "pt":
|
257 |
+
return torch.tensor(input_ids, dtype=torch.long)
|
258 |
+
raise ValueError(f"Unsupported tensor type: {return_tensors}")
|
259 |
+
return input_ids
|
260 |
+
|
261 |
+
|
262 |
+
def __call__(self, messages, inference=True) -> BatchFeature:
|
263 |
+
# Deal with images
|
264 |
+
if "images" not in messages or not messages["images"] or not messages["images"][0]:
|
265 |
+
images = [self.black_img]
|
266 |
+
elif type(messages["images"]) == str:
|
267 |
+
images = [messages["images"]]
|
268 |
+
else:
|
269 |
+
images = messages["images"][:16] # support 16 images
|
270 |
+
|
271 |
+
# Deal with conversations
|
272 |
+
conversations = messages["conversations"]
|
273 |
+
if conversations[0]["role"] != "system":
|
274 |
+
conversations = [{"role":"system", "content": None}] + conversations # dummy system prompt
|
275 |
+
|
276 |
+
# Insert special token `<image>`
|
277 |
+
assert conversations[1]["role"] == "user"
|
278 |
+
if images and "<image>" not in conversations[1]["content"]:
|
279 |
+
image_token = " ".join(["<image>"] * len(images))
|
280 |
+
conversations[1]["content"] = f"{image_token}\n{conversations[1]['content']}"
|
281 |
+
|
282 |
+
# The last message should be assistant if inference=True
|
283 |
+
if inference:
|
284 |
+
assert conversations[-1]["role"] == "user", "the last message should be assistant if inference=True"
|
285 |
+
|
286 |
+
# Image preprocess
|
287 |
+
precessed_images_siglip = self.preprocess_images_siglip(images)
|
288 |
+
processed_data_dict_qwen2vl = self.preprocess_images_qwen2vl(images)
|
289 |
+
source = self.preprocess_multimodal(conversations, len(precessed_images_siglip))
|
290 |
+
data_dict = self.preprocess_qwen2(source, self.tokenizer, has_image=True, only_mask_system=False, inference=inference)
|
291 |
+
|
292 |
+
# Construct batch data
|
293 |
+
data_dict["input_ids"] = data_dict["input_ids"].unsqueeze(0) # batch_size = 1
|
294 |
+
data_dict["labels"] = data_dict["labels"].unsqueeze(0)
|
295 |
+
data_dict["images"] = [precessed_images_siglip]
|
296 |
+
|
297 |
+
return BatchFeature(data={**data_dict, **processed_data_dict_qwen2vl})
|
298 |
+
|
299 |
+
def batch_decode(self, *args, **kwargs):
|
300 |
+
"""
|
301 |
+
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
|
302 |
+
refer to the docstring of this method for more information.
|
303 |
+
"""
|
304 |
+
return self.tokenizer.batch_decode(*args, **kwargs)
|
305 |
+
|
306 |
+
|
307 |
+
def decode(self, *args, **kwargs):
|
308 |
+
"""
|
309 |
+
This method forwards all its arguments to Qwen2TokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
|
310 |
+
the docstring of this method for more information.
|
311 |
+
"""
|
312 |
+
return self.tokenizer.decode(*args, **kwargs)
|
utils.py
ADDED
@@ -0,0 +1,251 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image
|
2 |
+
from io import BytesIO
|
3 |
+
import base64
|
4 |
+
import math
|
5 |
+
import ast
|
6 |
+
import re
|
7 |
+
import torch
|
8 |
+
from transformers import StoppingCriteria
|
9 |
+
|
10 |
+
IGNORE_INDEX = -100
|
11 |
+
IMAGE_TOKEN_INDEX = -200
|
12 |
+
GANDALF_TOKEN_INDEX = -300
|
13 |
+
DEFAULT_PAD_TOKEN = "[PAD]"
|
14 |
+
DEFAULT_EOS_TOKEN = "</s>"
|
15 |
+
DEFAULT_BOS_TOKEN = "</s>"
|
16 |
+
DEFAULT_UNK_TOKEN = "<unk>"
|
17 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
18 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
19 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
20 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
21 |
+
DEFAULT_VIDEO_TOKEN = "<video>"
|
22 |
+
DEFAULT_VIDEO_FRAME_TOKEN = "<vi_frame>"
|
23 |
+
DEFAULT_VI_START_TOKEN = "<vi_start>"
|
24 |
+
DEFAULT_VI_END_TOKEN = "<vi_end>"
|
25 |
+
DEFAULT_EOC_TOKEN = "<eoc>"
|
26 |
+
COR_START_TOKEN = "<cor>"
|
27 |
+
COR_END_TOKEN = "<\cor>"
|
28 |
+
SEQ_MAX_LEN = 50000
|
29 |
+
BLACK_IMG_ENV = b'\x89PNG\r\n\x1a\n\x00\x00\x00\rIHDR\x00\x00\x00\x03\x00\x00\x00\x03\x08\x02\x00\x00\x00\xd9J"\xe8\x00\x00\x00\x12IDAT\x08\x1dcd\x80\x01F\x06\x18`d\x80\x01\x00\x00Z\x00\x04we\x03N\x00\x00\x00\x00IEND\xaeB`\x82'
|
30 |
+
|
31 |
+
|
32 |
+
def get_anyres_image_grid_shape(image_size, grid_pinpoints, patch_size):
|
33 |
+
"""
|
34 |
+
Calculate the shape of the image patch grid after the preprocessing for images of any resolution.
|
35 |
+
|
36 |
+
Args:
|
37 |
+
image_size (tuple): The size of the input image in the format (width, height).
|
38 |
+
grid_pinpoints (str): A string representation of a list of possible resolutions.
|
39 |
+
patch_size (int): The size of each image patch.
|
40 |
+
|
41 |
+
Returns:
|
42 |
+
tuple: The shape of the image patch grid in the format (width, height).
|
43 |
+
"""
|
44 |
+
if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints:
|
45 |
+
assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]"
|
46 |
+
# Use regex to extract the range from the input string
|
47 |
+
matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints)
|
48 |
+
range_start = tuple(map(int, matches[0]))
|
49 |
+
range_end = tuple(map(int, matches[-1]))
|
50 |
+
# Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1])
|
51 |
+
grid_pinpoints = [
|
52 |
+
(i, j)
|
53 |
+
for i in range(range_start[0], range_end[0] + 1)
|
54 |
+
for j in range(range_start[1], range_end[1] + 1)
|
55 |
+
]
|
56 |
+
# Multiply all elements by patch_size
|
57 |
+
grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints]
|
58 |
+
if type(grid_pinpoints) is list:
|
59 |
+
possible_resolutions = grid_pinpoints
|
60 |
+
else:
|
61 |
+
possible_resolutions = ast.literal_eval(grid_pinpoints)
|
62 |
+
width, height = select_best_resolution(image_size, possible_resolutions)
|
63 |
+
return width // patch_size, height // patch_size
|
64 |
+
|
65 |
+
def select_best_resolution(original_size, possible_resolutions):
|
66 |
+
"""
|
67 |
+
Selects the best resolution from a list of possible resolutions based on the original size.
|
68 |
+
|
69 |
+
Args:
|
70 |
+
original_size (tuple): The original size of the image in the format (width, height).
|
71 |
+
possible_resolutions (list): A list of possible resolutions in the format
|
72 |
+
[(width1, height1), (width2, height2), ...].
|
73 |
+
|
74 |
+
Returns:
|
75 |
+
tuple: The best fit resolution in the format (width, height).
|
76 |
+
"""
|
77 |
+
original_width, original_height = original_size
|
78 |
+
best_fit = None
|
79 |
+
max_effective_resolution = 0
|
80 |
+
min_wasted_resolution = float("inf")
|
81 |
+
|
82 |
+
for width, height in possible_resolutions:
|
83 |
+
# Calculate the downscaled size to keep the aspect ratio
|
84 |
+
scale = min(width / original_width, height / original_height)
|
85 |
+
downscaled_width, downscaled_height = int(original_width * scale), int(original_height * scale)
|
86 |
+
|
87 |
+
# Calculate effective and wasted resolutions
|
88 |
+
effective_resolution = min(downscaled_width * downscaled_height, original_width * original_height)
|
89 |
+
wasted_resolution = (width * height) - effective_resolution
|
90 |
+
|
91 |
+
if effective_resolution > max_effective_resolution or \
|
92 |
+
(effective_resolution == max_effective_resolution and wasted_resolution < min_wasted_resolution):
|
93 |
+
max_effective_resolution = effective_resolution
|
94 |
+
min_wasted_resolution = wasted_resolution
|
95 |
+
best_fit = (width, height)
|
96 |
+
|
97 |
+
return best_fit
|
98 |
+
|
99 |
+
|
100 |
+
def unpad_image(tensor, original_size):
|
101 |
+
"""
|
102 |
+
Unpads a PyTorch tensor of a padded and resized image.
|
103 |
+
|
104 |
+
Args:
|
105 |
+
tensor (torch.Tensor): The image tensor, assumed to be in CxHxW format.
|
106 |
+
original_size (tuple): The original size of the image (height, width).
|
107 |
+
|
108 |
+
Returns:
|
109 |
+
torch.Tensor: The unpadded image tensor.
|
110 |
+
"""
|
111 |
+
original_width, original_height = original_size
|
112 |
+
current_height, current_width = tensor.shape[1:]
|
113 |
+
|
114 |
+
# Compute aspect ratios
|
115 |
+
original_aspect_ratio = original_width / original_height
|
116 |
+
current_aspect_ratio = current_width / current_height
|
117 |
+
|
118 |
+
# Determine padding size and direction
|
119 |
+
if original_aspect_ratio > current_aspect_ratio:
|
120 |
+
# Padding was added to the height
|
121 |
+
scale_factor = current_width / original_width
|
122 |
+
new_height = int(original_height * scale_factor)
|
123 |
+
padding = (current_height - new_height) // 2
|
124 |
+
unpadded_tensor = tensor[:, padding: current_height - padding, :]
|
125 |
+
else:
|
126 |
+
# Padding was added to the width
|
127 |
+
scale_factor = current_height / original_height
|
128 |
+
new_width = int(original_width * scale_factor)
|
129 |
+
padding = (current_width - new_width) // 2
|
130 |
+
unpadded_tensor = tensor[:, :, padding: current_width - padding]
|
131 |
+
|
132 |
+
return unpadded_tensor
|
133 |
+
|
134 |
+
|
135 |
+
def process_anyres_image(image, processor, grid_pinpoints):
|
136 |
+
"""
|
137 |
+
Process an image with variable resolutions.
|
138 |
+
|
139 |
+
Args:
|
140 |
+
image (PIL.Image.Image): The input image to be processed.
|
141 |
+
processor: The image processor object.
|
142 |
+
grid_pinpoints (str): A string representation of a list of possible resolutions.
|
143 |
+
|
144 |
+
Returns:
|
145 |
+
torch.Tensor: A tensor containing the processed image patches.
|
146 |
+
"""
|
147 |
+
# Convert grid_pinpoints from string to list
|
148 |
+
if isinstance(grid_pinpoints, str) and "x" in grid_pinpoints:
|
149 |
+
try:
|
150 |
+
patch_size = processor.size["height"]
|
151 |
+
except Exception:
|
152 |
+
patch_size = processor.size["shortest_edge"]
|
153 |
+
assert patch_size in [224, 336, 384, 448, 512], "patch_size should be in [224, 336, 384, 448, 512]"
|
154 |
+
# Use regex to extract the range from the input string
|
155 |
+
matches = re.findall(r"\((\d+)x(\d+)\)", grid_pinpoints)
|
156 |
+
range_start = tuple(map(int, matches[0]))
|
157 |
+
range_end = tuple(map(int, matches[-1]))
|
158 |
+
# Generate a matrix of tuples from (range_start[0], range_start[1]) to (range_end[0], range_end[1])
|
159 |
+
grid_pinpoints = [
|
160 |
+
(i, j)
|
161 |
+
for i in range(range_start[0], range_end[0] + 1)
|
162 |
+
for j in range(range_start[1], range_end[1] + 1)
|
163 |
+
]
|
164 |
+
# Multiply all elements by patch_size
|
165 |
+
grid_pinpoints = [[dim * patch_size for dim in pair] for pair in grid_pinpoints]
|
166 |
+
|
167 |
+
if type(grid_pinpoints) is list:
|
168 |
+
possible_resolutions = grid_pinpoints
|
169 |
+
else:
|
170 |
+
possible_resolutions = ast.literal_eval(grid_pinpoints)
|
171 |
+
best_resolution = select_best_resolution(image.size, possible_resolutions)
|
172 |
+
image_padded = resize_and_pad_image(image, best_resolution)
|
173 |
+
|
174 |
+
patches = divide_to_patches(image_padded, processor.size["height"])
|
175 |
+
|
176 |
+
# FIXME: this seems to be a bug that it resizes instead of pad.
|
177 |
+
# but to keep it consistent with previous, i will keep it as it is
|
178 |
+
# TODO: uncomment below to ablate with the padding
|
179 |
+
if isinstance(processor.size, dict):
|
180 |
+
shortest_edge = processor.size["height"]
|
181 |
+
else:
|
182 |
+
shortest_edge = min(processor.size)
|
183 |
+
image_original_resize = image.resize((shortest_edge, shortest_edge))
|
184 |
+
# image_padded_square = expand2square(image, tuple(int(x*255) for x in processor.image_mean))
|
185 |
+
|
186 |
+
image_patches = [image_original_resize] + patches
|
187 |
+
image_patches = [
|
188 |
+
processor.preprocess(image_patch, return_tensors="pt")["pixel_values"][0]
|
189 |
+
for image_patch in image_patches
|
190 |
+
]
|
191 |
+
# return torch.stack(image_patches, dim=0)
|
192 |
+
return image_patches
|
193 |
+
|
194 |
+
def resize_and_pad_image(image, target_resolution):
|
195 |
+
"""
|
196 |
+
Resize and pad an image to a target resolution while maintaining aspect ratio.
|
197 |
+
|
198 |
+
Args:
|
199 |
+
image (PIL.Image.Image): The input image.
|
200 |
+
target_resolution (tuple): The target resolution (width, height) of the image.
|
201 |
+
|
202 |
+
Returns:
|
203 |
+
PIL.Image.Image: The resized and padded image.
|
204 |
+
"""
|
205 |
+
original_width, original_height = image.size
|
206 |
+
target_width, target_height = target_resolution
|
207 |
+
|
208 |
+
# Determine which dimension (width or height) to fill
|
209 |
+
scale_w = target_width / original_width
|
210 |
+
scale_h = target_height / original_height
|
211 |
+
|
212 |
+
if scale_w < scale_h:
|
213 |
+
# Width will be filled completely
|
214 |
+
new_width = target_width
|
215 |
+
new_height = min(math.ceil(original_height * scale_w), target_height)
|
216 |
+
else:
|
217 |
+
# Height will be filled completely
|
218 |
+
new_height = target_height
|
219 |
+
new_width = min(math.ceil(original_width * scale_h), target_width)
|
220 |
+
|
221 |
+
# Resize the image
|
222 |
+
resized_image = image.resize((new_width, new_height))
|
223 |
+
|
224 |
+
# Create a new image with the target size and paste the resized image onto it
|
225 |
+
new_image = Image.new("RGB", (target_width, target_height), (0, 0, 0))
|
226 |
+
paste_x = (target_width - new_width) // 2
|
227 |
+
paste_y = (target_height - new_height) // 2
|
228 |
+
new_image.paste(resized_image, (paste_x, paste_y))
|
229 |
+
|
230 |
+
return new_image
|
231 |
+
|
232 |
+
def divide_to_patches(image, patch_size):
|
233 |
+
"""
|
234 |
+
Divides an image into patches of a specified size.
|
235 |
+
|
236 |
+
Args:
|
237 |
+
image (PIL.Image.Image): The input image.
|
238 |
+
patch_size (int): The size of each patch.
|
239 |
+
|
240 |
+
Returns:
|
241 |
+
list: A list of PIL.Image.Image objects representing the patches.
|
242 |
+
"""
|
243 |
+
patches = []
|
244 |
+
width, height = image.size
|
245 |
+
for i in range(0, height, patch_size):
|
246 |
+
for j in range(0, width, patch_size):
|
247 |
+
box = (j, i, j + patch_size, i + patch_size)
|
248 |
+
patch = image.crop(box)
|
249 |
+
patches.append(patch)
|
250 |
+
|
251 |
+
return patches
|