c-bone's picture
Upload folder using huggingface_hub
1e610e6 verified
[2025-04-17 15:51:14,150][38462] Saving configuration to /home/uccacbo/Deep-RL-HF/train_dir/default_experiment/config.json...
[2025-04-17 15:51:14,151][38462] Rollout worker 0 uses device cpu
[2025-04-17 15:51:14,152][38462] Rollout worker 1 uses device cpu
[2025-04-17 15:51:14,152][38462] Rollout worker 2 uses device cpu
[2025-04-17 15:51:14,153][38462] Rollout worker 3 uses device cpu
[2025-04-17 15:51:14,154][38462] Rollout worker 4 uses device cpu
[2025-04-17 15:51:14,155][38462] Rollout worker 5 uses device cpu
[2025-04-17 15:51:14,156][38462] Rollout worker 6 uses device cpu
[2025-04-17 15:51:14,157][38462] Rollout worker 7 uses device cpu
[2025-04-17 15:51:14,281][38462] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2025-04-17 15:51:14,281][38462] InferenceWorker_p0-w0: min num requests: 2
[2025-04-17 15:51:14,301][38462] Starting all processes...
[2025-04-17 15:51:14,302][38462] Starting process learner_proc0
[2025-04-17 15:51:14,355][38462] Starting all processes...
[2025-04-17 15:51:14,362][38462] Starting process inference_proc0-0
[2025-04-17 15:51:14,362][38462] Starting process rollout_proc0
[2025-04-17 15:51:14,363][38462] Starting process rollout_proc1
[2025-04-17 15:51:14,364][38462] Starting process rollout_proc2
[2025-04-17 15:51:14,364][38462] Starting process rollout_proc3
[2025-04-17 15:51:14,365][38462] Starting process rollout_proc4
[2025-04-17 15:51:14,366][38462] Starting process rollout_proc5
[2025-04-17 15:51:14,366][38462] Starting process rollout_proc6
[2025-04-17 15:51:14,369][38462] Starting process rollout_proc7
[2025-04-17 15:51:20,105][48477] Worker 4 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
[2025-04-17 15:51:20,105][48473] Worker 0 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
[2025-04-17 15:51:20,105][48479] Worker 6 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
[2025-04-17 15:51:20,105][48474] Worker 1 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
[2025-04-17 15:51:20,105][48480] Worker 7 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
[2025-04-17 15:51:20,105][48475] Worker 2 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
[2025-04-17 15:51:20,105][48478] Worker 5 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
[2025-04-17 15:51:20,105][48476] Worker 3 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
[2025-04-17 15:51:20,106][48472] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2025-04-17 15:51:20,106][48459] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2025-04-17 15:51:20,106][48472] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
[2025-04-17 15:51:20,106][48459] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
[2025-04-17 15:51:20,204][48472] Num visible devices: 1
[2025-04-17 15:51:20,205][48459] Num visible devices: 1
[2025-04-17 15:51:20,206][48459] Starting seed is not provided
[2025-04-17 15:51:20,207][48459] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2025-04-17 15:51:20,207][48459] Initializing actor-critic model on device cuda:0
[2025-04-17 15:51:20,210][48459] RunningMeanStd input shape: (3, 72, 128)
[2025-04-17 15:51:20,226][48459] RunningMeanStd input shape: (1,)
[2025-04-17 15:51:20,270][48459] ConvEncoder: input_channels=3
[2025-04-17 15:51:20,552][48459] Conv encoder output size: 512
[2025-04-17 15:51:20,554][48459] Policy head output size: 512
[2025-04-17 15:51:20,632][48459] Created Actor Critic model with architecture:
[2025-04-17 15:51:20,636][48459] ActorCriticSharedWeights(
(obs_normalizer): ObservationNormalizer(
(running_mean_std): RunningMeanStdDictInPlace(
(running_mean_std): ModuleDict(
(obs): RunningMeanStdInPlace()
)
)
)
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
(encoder): VizdoomEncoder(
(basic_encoder): ConvEncoder(
(enc): RecursiveScriptModule(
original_name=ConvEncoderImpl
(conv_head): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Conv2d)
(1): RecursiveScriptModule(original_name=ELU)
(2): RecursiveScriptModule(original_name=Conv2d)
(3): RecursiveScriptModule(original_name=ELU)
(4): RecursiveScriptModule(original_name=Conv2d)
(5): RecursiveScriptModule(original_name=ELU)
)
(mlp_layers): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Linear)
(1): RecursiveScriptModule(original_name=ELU)
)
)
)
)
(core): ModelCoreRNN(
(core): GRU(512, 512)
)
(decoder): MlpDecoder(
(mlp): Identity()
)
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
(action_parameterization): ActionParameterizationDefault(
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
)
)
[2025-04-17 15:51:34,270][38462] Heartbeat connected on Batcher_0
[2025-04-17 15:51:34,463][38462] Heartbeat connected on RolloutWorker_w2
[2025-04-17 15:51:34,917][38462] Heartbeat connected on RolloutWorker_w1
[2025-04-17 15:51:35,512][38462] Heartbeat connected on RolloutWorker_w4
[2025-04-17 15:51:35,962][38462] Heartbeat connected on RolloutWorker_w3
[2025-04-17 15:51:36,514][38462] Heartbeat connected on RolloutWorker_w5
[2025-04-17 15:51:37,019][38462] Heartbeat connected on RolloutWorker_w0
[2025-04-17 15:51:37,729][38462] Heartbeat connected on InferenceWorker_p0-w0
[2025-04-17 15:51:38,109][38462] Heartbeat connected on RolloutWorker_w6
[2025-04-17 15:51:38,468][38462] Heartbeat connected on RolloutWorker_w7
[2025-04-17 15:52:29,514][38462] Keyboard interrupt detected in the event loop EvtLoop [Runner_EvtLoop, process=main process 38462], exiting...
[2025-04-17 15:52:29,567][48479] Stopping RolloutWorker_w6...
[2025-04-17 15:52:29,567][48475] Stopping RolloutWorker_w2...
[2025-04-17 15:52:29,566][48478] Stopping RolloutWorker_w5...
[2025-04-17 15:52:29,567][48474] Stopping RolloutWorker_w1...
[2025-04-17 15:52:29,567][48476] Stopping RolloutWorker_w3...
[2025-04-17 15:52:29,566][48477] Stopping RolloutWorker_w4...
[2025-04-17 15:52:29,567][48475] Loop rollout_proc2_evt_loop terminating...
[2025-04-17 15:52:29,567][48479] Loop rollout_proc6_evt_loop terminating...
[2025-04-17 15:52:29,568][48478] Loop rollout_proc5_evt_loop terminating...
[2025-04-17 15:52:29,568][48476] Loop rollout_proc3_evt_loop terminating...
[2025-04-17 15:52:29,568][48474] Loop rollout_proc1_evt_loop terminating...
[2025-04-17 15:52:29,567][48480] Stopping RolloutWorker_w7...
[2025-04-17 15:52:29,568][48477] Loop rollout_proc4_evt_loop terminating...
[2025-04-17 15:52:29,567][48472] Stopping InferenceWorker_p0-w0...
[2025-04-17 15:52:29,568][48473] Stopping RolloutWorker_w0...
[2025-04-17 15:52:29,568][48480] Loop rollout_proc7_evt_loop terminating...
[2025-04-17 15:52:29,569][48472] Loop inference_proc0-0_evt_loop terminating...
[2025-04-17 15:52:29,569][48473] Loop rollout_proc0_evt_loop terminating...
[2025-04-17 15:52:29,568][48459] Stopping Batcher_0...
[2025-04-17 15:52:29,570][48459] Loop batcher_evt_loop terminating...
[2025-04-17 15:52:29,566][38462] Runner profile tree view:
main_loop: 75.2660
[2025-04-17 15:52:29,576][38462] Collected {}, FPS: 0.0
[2025-04-17 15:52:31,947][48459] Using optimizer <class 'torch.optim.adam.Adam'>
[2025-04-17 15:52:33,028][48459] No checkpoints found
[2025-04-17 15:52:33,028][48459] Did not load from checkpoint, starting from scratch!
[2025-04-17 15:52:33,029][48459] Initialized policy 0 weights for model version 0
[2025-04-17 15:52:33,037][48459] LearnerWorker_p0 finished initialization!
[2025-04-17 15:52:33,037][48459] Saving /home/uccacbo/Deep-RL-HF/train_dir/default_experiment/checkpoint_p0/checkpoint_000000000_0.pth...
[2025-04-17 15:52:33,058][48459] Stopping LearnerWorker_p0...
[2025-04-17 15:52:33,058][48459] Loop learner_proc0_evt_loop terminating...
[2025-04-17 15:58:07,874][38462] Environment doom_basic already registered, overwriting...
[2025-04-17 15:58:07,878][38462] Environment doom_two_colors_easy already registered, overwriting...
[2025-04-17 15:58:07,878][38462] Environment doom_two_colors_hard already registered, overwriting...
[2025-04-17 15:58:07,879][38462] Environment doom_dm already registered, overwriting...
[2025-04-17 15:58:07,880][38462] Environment doom_dwango5 already registered, overwriting...
[2025-04-17 15:58:07,881][38462] Environment doom_my_way_home_flat_actions already registered, overwriting...
[2025-04-17 15:58:07,882][38462] Environment doom_defend_the_center_flat_actions already registered, overwriting...
[2025-04-17 15:58:07,883][38462] Environment doom_my_way_home already registered, overwriting...
[2025-04-17 15:58:07,885][38462] Environment doom_deadly_corridor already registered, overwriting...
[2025-04-17 15:58:07,886][38462] Environment doom_defend_the_center already registered, overwriting...
[2025-04-17 15:58:07,887][38462] Environment doom_defend_the_line already registered, overwriting...
[2025-04-17 15:58:07,888][38462] Environment doom_health_gathering already registered, overwriting...
[2025-04-17 15:58:07,889][38462] Environment doom_health_gathering_supreme already registered, overwriting...
[2025-04-17 15:58:07,890][38462] Environment doom_battle already registered, overwriting...
[2025-04-17 15:58:07,891][38462] Environment doom_battle2 already registered, overwriting...
[2025-04-17 15:58:07,892][38462] Environment doom_duel_bots already registered, overwriting...
[2025-04-17 15:58:07,892][38462] Environment doom_deathmatch_bots already registered, overwriting...
[2025-04-17 15:58:07,894][38462] Environment doom_duel already registered, overwriting...
[2025-04-17 15:58:07,894][38462] Environment doom_deathmatch_full already registered, overwriting...
[2025-04-17 15:58:07,895][38462] Environment doom_benchmark already registered, overwriting...
[2025-04-17 15:58:07,896][38462] register_encoder_factory: <function make_vizdoom_encoder at 0x7fd13a31b250>
[2025-04-17 15:58:07,909][38462] Loading existing experiment configuration from /home/uccacbo/Deep-RL-HF/train_dir/default_experiment/config.json
[2025-04-17 15:58:07,911][38462] Overriding arg 'num_workers' with value 1 passed from command line
[2025-04-17 15:58:07,913][38462] Overriding arg 'num_envs_per_worker' with value 1 passed from command line
[2025-04-17 15:58:07,913][38462] Overriding arg 'train_for_env_steps' with value 4000 passed from command line
[2025-04-17 15:58:07,921][38462] Experiment dir /home/uccacbo/Deep-RL-HF/train_dir/default_experiment already exists!
[2025-04-17 15:58:07,922][38462] Resuming existing experiment from /home/uccacbo/Deep-RL-HF/train_dir/default_experiment...
[2025-04-17 15:58:07,924][38462] Weights and Biases integration disabled
[2025-04-17 15:58:07,933][38462] Environment var CUDA_VISIBLE_DEVICES is 0
[2025-04-17 15:58:10,470][38462] cfg.num_envs_per_worker=1 must be a multiple of cfg.worker_num_splits=2 (for double-buffered sampling you need to use even number of envs per worker)
[2025-04-17 15:58:21,350][38462] Environment doom_basic already registered, overwriting...
[2025-04-17 15:58:21,351][38462] Environment doom_two_colors_easy already registered, overwriting...
[2025-04-17 15:58:21,352][38462] Environment doom_two_colors_hard already registered, overwriting...
[2025-04-17 15:58:21,353][38462] Environment doom_dm already registered, overwriting...
[2025-04-17 15:58:21,354][38462] Environment doom_dwango5 already registered, overwriting...
[2025-04-17 15:58:21,354][38462] Environment doom_my_way_home_flat_actions already registered, overwriting...
[2025-04-17 15:58:21,355][38462] Environment doom_defend_the_center_flat_actions already registered, overwriting...
[2025-04-17 15:58:21,355][38462] Environment doom_my_way_home already registered, overwriting...
[2025-04-17 15:58:21,356][38462] Environment doom_deadly_corridor already registered, overwriting...
[2025-04-17 15:58:21,356][38462] Environment doom_defend_the_center already registered, overwriting...
[2025-04-17 15:58:21,357][38462] Environment doom_defend_the_line already registered, overwriting...
[2025-04-17 15:58:21,358][38462] Environment doom_health_gathering already registered, overwriting...
[2025-04-17 15:58:21,359][38462] Environment doom_health_gathering_supreme already registered, overwriting...
[2025-04-17 15:58:21,359][38462] Environment doom_battle already registered, overwriting...
[2025-04-17 15:58:21,360][38462] Environment doom_battle2 already registered, overwriting...
[2025-04-17 15:58:21,361][38462] Environment doom_duel_bots already registered, overwriting...
[2025-04-17 15:58:21,361][38462] Environment doom_deathmatch_bots already registered, overwriting...
[2025-04-17 15:58:21,362][38462] Environment doom_duel already registered, overwriting...
[2025-04-17 15:58:21,363][38462] Environment doom_deathmatch_full already registered, overwriting...
[2025-04-17 15:58:21,364][38462] Environment doom_benchmark already registered, overwriting...
[2025-04-17 15:58:21,365][38462] register_encoder_factory: <function make_vizdoom_encoder at 0x7fd13a31b250>
[2025-04-17 15:58:21,371][38462] Loading existing experiment configuration from /home/uccacbo/Deep-RL-HF/train_dir/default_experiment/config.json
[2025-04-17 15:58:21,372][38462] Overriding arg 'num_workers' with value 1 passed from command line
[2025-04-17 15:58:21,373][38462] Overriding arg 'num_envs_per_worker' with value 2 passed from command line
[2025-04-17 15:58:21,373][38462] Overriding arg 'train_for_env_steps' with value 4000 passed from command line
[2025-04-17 15:58:21,378][38462] Experiment dir /home/uccacbo/Deep-RL-HF/train_dir/default_experiment already exists!
[2025-04-17 15:58:21,379][38462] Resuming existing experiment from /home/uccacbo/Deep-RL-HF/train_dir/default_experiment...
[2025-04-17 15:58:21,380][38462] Weights and Biases integration disabled
[2025-04-17 15:58:21,382][38462] Environment var CUDA_VISIBLE_DEVICES is 0
[2025-04-17 15:58:22,980][38462] Starting experiment with the following configuration:
help=False
algo=APPO
env=doom_health_gathering_supreme
experiment=default_experiment
train_dir=/home/uccacbo/Deep-RL-HF/train_dir
restart_behavior=resume
device=gpu
seed=None
num_policies=1
async_rl=True
serial_mode=False
batched_sampling=False
num_batches_to_accumulate=2
worker_num_splits=2
policy_workers_per_policy=1
max_policy_lag=1000
num_workers=1
num_envs_per_worker=2
batch_size=1024
num_batches_per_epoch=1
num_epochs=1
rollout=32
recurrence=32
shuffle_minibatches=False
gamma=0.99
reward_scale=1.0
reward_clip=1000.0
value_bootstrap=False
normalize_returns=True
exploration_loss_coeff=0.001
value_loss_coeff=0.5
kl_loss_coeff=0.0
exploration_loss=symmetric_kl
gae_lambda=0.95
ppo_clip_ratio=0.1
ppo_clip_value=0.2
with_vtrace=False
vtrace_rho=1.0
vtrace_c=1.0
optimizer=adam
adam_eps=1e-06
adam_beta1=0.9
adam_beta2=0.999
max_grad_norm=4.0
learning_rate=0.0001
lr_schedule=constant
lr_schedule_kl_threshold=0.008
lr_adaptive_min=1e-06
lr_adaptive_max=0.01
obs_subtract_mean=0.0
obs_scale=255.0
normalize_input=True
normalize_input_keys=None
decorrelate_experience_max_seconds=0
decorrelate_envs_on_one_worker=True
actor_worker_gpus=[]
set_workers_cpu_affinity=True
force_envs_single_thread=False
default_niceness=0
log_to_file=True
experiment_summaries_interval=10
flush_summaries_interval=30
stats_avg=100
summaries_use_frameskip=True
heartbeat_interval=20
heartbeat_reporting_interval=600
train_for_env_steps=4000
train_for_seconds=10000000000
save_every_sec=120
keep_checkpoints=2
load_checkpoint_kind=latest
save_milestones_sec=-1
save_best_every_sec=5
save_best_metric=reward
save_best_after=100000
benchmark=False
encoder_mlp_layers=[512, 512]
encoder_conv_architecture=convnet_simple
encoder_conv_mlp_layers=[512]
use_rnn=True
rnn_size=512
rnn_type=gru
rnn_num_layers=1
decoder_mlp_layers=[]
nonlinearity=elu
policy_initialization=orthogonal
policy_init_gain=1.0
actor_critic_share_weights=True
adaptive_stddev=True
continuous_tanh_scale=0.0
initial_stddev=1.0
use_env_info_cache=False
env_gpu_actions=False
env_gpu_observations=True
env_frameskip=4
env_framestack=1
pixel_format=CHW
use_record_episode_statistics=False
with_wandb=False
wandb_user=None
wandb_project=sample_factory
wandb_group=None
wandb_job_type=SF
wandb_tags=[]
with_pbt=False
pbt_mix_policies_in_one_env=True
pbt_period_env_steps=5000000
pbt_start_mutation=20000000
pbt_replace_fraction=0.3
pbt_mutation_rate=0.15
pbt_replace_reward_gap=0.1
pbt_replace_reward_gap_absolute=1e-06
pbt_optimize_gamma=False
pbt_target_objective=true_objective
pbt_perturb_min=1.1
pbt_perturb_max=1.5
num_agents=-1
num_humans=0
num_bots=-1
start_bot_difficulty=None
timelimit=None
res_w=128
res_h=72
wide_aspect_ratio=False
eval_env_frameskip=1
fps=35
command_line=--env=doom_health_gathering_supreme --num_workers=8 --num_envs_per_worker=4 --train_for_env_steps=400000
cli_args={'env': 'doom_health_gathering_supreme', 'num_workers': 8, 'num_envs_per_worker': 4, 'train_for_env_steps': 400000}
git_hash=unknown
git_repo_name=not a git repository
[2025-04-17 15:58:22,981][38462] Saving configuration to /home/uccacbo/Deep-RL-HF/train_dir/default_experiment/config.json...
[2025-04-17 15:58:22,982][38462] Rollout worker 0 uses device cpu
[2025-04-17 15:58:23,030][38462] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2025-04-17 15:58:23,031][38462] InferenceWorker_p0-w0: min num requests: 1
[2025-04-17 15:58:23,035][38462] Starting all processes...
[2025-04-17 15:58:23,035][38462] Starting process learner_proc0
[2025-04-17 15:58:23,085][38462] Starting all processes...
[2025-04-17 15:58:23,088][38462] Starting process inference_proc0-0
[2025-04-17 15:58:23,089][38462] Starting process rollout_proc0
[2025-04-17 15:58:24,649][51423] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2025-04-17 15:58:24,649][51423] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for learning process 0
[2025-04-17 15:58:24,656][51429] Worker 0 uses CPU cores [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
[2025-04-17 15:58:24,671][51430] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2025-04-17 15:58:24,671][51430] Set environment var CUDA_VISIBLE_DEVICES to '0' (GPU indices [0]) for inference process 0
[2025-04-17 15:58:24,718][51430] Num visible devices: 1
[2025-04-17 15:58:24,718][51423] Num visible devices: 1
[2025-04-17 15:58:24,719][51423] Starting seed is not provided
[2025-04-17 15:58:24,720][51423] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2025-04-17 15:58:24,720][51423] Initializing actor-critic model on device cuda:0
[2025-04-17 15:58:24,720][51423] RunningMeanStd input shape: (3, 72, 128)
[2025-04-17 15:58:24,721][51423] RunningMeanStd input shape: (1,)
[2025-04-17 15:58:24,728][51423] ConvEncoder: input_channels=3
[2025-04-17 15:58:24,838][51423] Conv encoder output size: 512
[2025-04-17 15:58:24,839][51423] Policy head output size: 512
[2025-04-17 15:58:24,856][51423] Created Actor Critic model with architecture:
[2025-04-17 15:58:24,856][51423] ActorCriticSharedWeights(
(obs_normalizer): ObservationNormalizer(
(running_mean_std): RunningMeanStdDictInPlace(
(running_mean_std): ModuleDict(
(obs): RunningMeanStdInPlace()
)
)
)
(returns_normalizer): RecursiveScriptModule(original_name=RunningMeanStdInPlace)
(encoder): VizdoomEncoder(
(basic_encoder): ConvEncoder(
(enc): RecursiveScriptModule(
original_name=ConvEncoderImpl
(conv_head): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Conv2d)
(1): RecursiveScriptModule(original_name=ELU)
(2): RecursiveScriptModule(original_name=Conv2d)
(3): RecursiveScriptModule(original_name=ELU)
(4): RecursiveScriptModule(original_name=Conv2d)
(5): RecursiveScriptModule(original_name=ELU)
)
(mlp_layers): RecursiveScriptModule(
original_name=Sequential
(0): RecursiveScriptModule(original_name=Linear)
(1): RecursiveScriptModule(original_name=ELU)
)
)
)
)
(core): ModelCoreRNN(
(core): GRU(512, 512)
)
(decoder): MlpDecoder(
(mlp): Identity()
)
(critic_linear): Linear(in_features=512, out_features=1, bias=True)
(action_parameterization): ActionParameterizationDefault(
(distribution_linear): Linear(in_features=512, out_features=5, bias=True)
)
)
[2025-04-17 15:58:25,270][51423] Using optimizer <class 'torch.optim.adam.Adam'>
[2025-04-17 15:58:26,272][51423] Loading state from checkpoint /home/uccacbo/Deep-RL-HF/train_dir/default_experiment/checkpoint_p0/checkpoint_000000000_0.pth...
[2025-04-17 15:58:26,309][51423] Loading model from checkpoint
[2025-04-17 15:58:26,310][51423] Loaded experiment state at self.train_step=0, self.env_steps=0
[2025-04-17 15:58:26,310][51423] Initialized policy 0 weights for model version 0
[2025-04-17 15:58:26,315][51423] LearnerWorker_p0 finished initialization!
[2025-04-17 15:58:26,316][51423] Using GPUs [0] for process 0 (actually maps to GPUs [0])
[2025-04-17 15:58:26,382][38462] Fps is (10 sec: nan, 60 sec: nan, 300 sec: nan). Total num frames: 0. Throughput: 0: nan. Samples: 0. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 15:58:26,480][51430] RunningMeanStd input shape: (3, 72, 128)
[2025-04-17 15:58:26,481][51430] RunningMeanStd input shape: (1,)
[2025-04-17 15:58:26,488][51430] ConvEncoder: input_channels=3
[2025-04-17 15:58:26,556][51430] Conv encoder output size: 512
[2025-04-17 15:58:26,556][51430] Policy head output size: 512
[2025-04-17 15:58:26,595][38462] Inference worker 0-0 is ready!
[2025-04-17 15:58:26,596][38462] All inference workers are ready! Signal rollout workers to start!
[2025-04-17 15:58:26,692][51429] Doom resolution: 160x120, resize resolution: (128, 72)
[2025-04-17 15:58:26,978][51429] Decorrelating experience for 0 frames...
[2025-04-17 15:58:27,129][51429] Decorrelating experience for 32 frames...
[2025-04-17 15:58:31,382][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 72.2. Samples: 361. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 15:58:31,385][38462] Avg episode reward: [(0, '4.080')]
[2025-04-17 15:58:36,385][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 167.4. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 15:58:36,420][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 15:58:41,389][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 111.6. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 15:58:41,405][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 15:58:43,078][38462] Heartbeat connected on Batcher_0
[2025-04-17 15:58:43,145][38462] Heartbeat connected on RolloutWorker_w0
[2025-04-17 15:58:46,385][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 83.7. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 15:58:46,453][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 15:58:51,549][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 66.6. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 15:58:52,038][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 15:58:56,514][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 55.6. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 15:58:56,762][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 15:59:01,432][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 47.8. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 15:59:01,678][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 15:59:06,401][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 41.8. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 15:59:06,881][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 15:59:11,636][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 37.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 15:59:12,123][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 15:59:16,672][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 29.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 15:59:17,010][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 15:59:23,230][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 15:59:23,341][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 15:59:26,435][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 15:59:26,561][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 15:59:31,394][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 15:59:31,468][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 15:59:36,412][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 15:59:36,464][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 15:59:41,432][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 15:59:41,842][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 15:59:46,467][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 15:59:46,605][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 15:59:51,396][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 15:59:51,426][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 15:59:57,740][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 15:59:58,246][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 16:00:01,482][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 16:00:01,776][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 16:00:06,505][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 16:00:06,724][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 16:00:11,616][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 16:00:11,940][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 16:00:16,522][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 16:00:16,973][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 16:00:21,574][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 16:00:21,990][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 16:00:26,518][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 16:00:26,894][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 16:00:32,477][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 16:00:33,016][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 16:00:36,512][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 16:00:36,813][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 16:00:41,673][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 16:00:42,174][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 16:00:46,558][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 16:00:46,922][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 16:00:51,544][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 16:00:51,982][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 16:00:56,573][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 16:00:56,913][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 16:01:01,408][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 16:01:01,494][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 16:01:06,768][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 16:01:07,035][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 16:01:11,481][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 16:01:11,860][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 16:01:16,526][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 16:01:17,049][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 16:01:21,568][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 16:01:22,025][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 16:01:26,577][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 16:01:27,041][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 16:01:32,480][38462] Fps is (10 sec: 0.0, 60 sec: 0.0, 300 sec: 0.0). Total num frames: 0. Throughput: 0: 0.0. Samples: 1674. Policy #0 lag: (min: -1.0, avg: -1.0, max: -1.0)
[2025-04-17 16:01:37,774][38462] Avg episode reward: [(0, '4.191')]
[2025-04-17 16:01:41,829][38462] Keyboard interrupt detected in the event loop EvtLoop [Runner_EvtLoop, process=main process 38462], exiting...
[2025-04-17 16:01:41,835][51423] Stopping Batcher_0...
[2025-04-17 16:01:41,836][51423] Loop batcher_evt_loop terminating...
[2025-04-17 16:01:41,835][38462] Runner profile tree view:
main_loop: 198.8007
[2025-04-17 16:01:41,838][38462] Collected {0: 0}, FPS: 0.0
[2025-04-17 16:01:41,897][51429] Stopping RolloutWorker_w0...
[2025-04-17 16:01:41,900][51429] Loop rollout_proc0_evt_loop terminating...
[2025-04-17 16:01:42,285][51430] Weights refcount: 2 0
[2025-04-17 16:01:42,292][51430] Stopping InferenceWorker_p0-w0...
[2025-04-17 16:01:42,293][51430] Loop inference_proc0-0_evt_loop terminating...
[2025-04-17 16:01:42,343][51423] Saving /home/uccacbo/Deep-RL-HF/train_dir/default_experiment/checkpoint_p0/checkpoint_000000001_4096.pth...
[2025-04-17 16:01:42,607][51423] Saving /home/uccacbo/Deep-RL-HF/train_dir/default_experiment/checkpoint_p0/checkpoint_000000001_4096.pth...
[2025-04-17 16:01:42,772][51423] Stopping LearnerWorker_p0...
[2025-04-17 16:01:42,772][51423] Loop learner_proc0_evt_loop terminating...
[2025-04-17 16:02:52,360][38462] Loading existing experiment configuration from /home/uccacbo/Deep-RL-HF/train_dir/default_experiment/config.json
[2025-04-17 16:02:52,360][38462] Adding new argument 'no_render'=True that is not in the saved config file!
[2025-04-17 16:02:52,361][38462] Adding new argument 'save_video'=True that is not in the saved config file!
[2025-04-17 16:02:52,362][38462] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2025-04-17 16:02:52,362][38462] Adding new argument 'video_name'=None that is not in the saved config file!
[2025-04-17 16:02:52,362][38462] Adding new argument 'max_num_frames'=1000000000.0 that is not in the saved config file!
[2025-04-17 16:02:52,363][38462] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2025-04-17 16:02:52,364][38462] Adding new argument 'push_to_hub'=False that is not in the saved config file!
[2025-04-17 16:02:52,365][38462] Adding new argument 'hf_repository'=None that is not in the saved config file!
[2025-04-17 16:02:52,365][38462] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2025-04-17 16:02:52,366][38462] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2025-04-17 16:02:52,367][38462] Adding new argument 'train_script'=None that is not in the saved config file!
[2025-04-17 16:02:52,368][38462] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2025-04-17 16:02:52,369][38462] Using frameskip 1 and render_action_repeat=4 for evaluation
[2025-04-17 16:02:52,401][38462] Doom resolution: 160x120, resize resolution: (128, 72)
[2025-04-17 16:02:52,406][38462] RunningMeanStd input shape: (3, 72, 128)
[2025-04-17 16:02:52,409][38462] RunningMeanStd input shape: (1,)
[2025-04-17 16:02:52,439][38462] ConvEncoder: input_channels=3
[2025-04-17 16:02:52,562][38462] Conv encoder output size: 512
[2025-04-17 16:02:52,562][38462] Policy head output size: 512
[2025-04-17 16:02:53,101][38462] Loading state from checkpoint /home/uccacbo/Deep-RL-HF/train_dir/default_experiment/checkpoint_p0/checkpoint_000000001_4096.pth...
[2025-04-17 16:02:53,978][38462] Num frames 100...
[2025-04-17 16:02:54,078][38462] Num frames 200...
[2025-04-17 16:02:54,181][38462] Num frames 300...
[2025-04-17 16:02:54,318][38462] Avg episode rewards: #0: 3.840, true rewards: #0: 3.840
[2025-04-17 16:02:54,319][38462] Avg episode reward: 3.840, avg true_objective: 3.840
[2025-04-17 16:02:54,342][38462] Num frames 400...
[2025-04-17 16:02:54,452][38462] Num frames 500...
[2025-04-17 16:02:54,546][38462] Num frames 600...
[2025-04-17 16:02:54,647][38462] Num frames 700...
[2025-04-17 16:02:54,754][38462] Num frames 800...
[2025-04-17 16:02:54,846][38462] Avg episode rewards: #0: 4.660, true rewards: #0: 4.160
[2025-04-17 16:02:54,847][38462] Avg episode reward: 4.660, avg true_objective: 4.160
[2025-04-17 16:02:54,921][38462] Num frames 900...
[2025-04-17 16:02:55,019][38462] Num frames 1000...
[2025-04-17 16:02:55,120][38462] Num frames 1100...
[2025-04-17 16:02:55,219][38462] Num frames 1200...
[2025-04-17 16:02:55,293][38462] Avg episode rewards: #0: 4.387, true rewards: #0: 4.053
[2025-04-17 16:02:55,295][38462] Avg episode reward: 4.387, avg true_objective: 4.053
[2025-04-17 16:02:55,393][38462] Num frames 1300...
[2025-04-17 16:02:55,488][38462] Num frames 1400...
[2025-04-17 16:02:55,594][38462] Num frames 1500...
[2025-04-17 16:02:55,695][38462] Num frames 1600...
[2025-04-17 16:02:55,780][38462] Avg episode rewards: #0: 4.580, true rewards: #0: 4.080
[2025-04-17 16:02:55,781][38462] Avg episode reward: 4.580, avg true_objective: 4.080
[2025-04-17 16:02:55,847][38462] Num frames 1700...
[2025-04-17 16:02:55,945][38462] Num frames 1800...
[2025-04-17 16:02:56,038][38462] Num frames 1900...
[2025-04-17 16:02:56,132][38462] Num frames 2000...
[2025-04-17 16:02:56,203][38462] Avg episode rewards: #0: 4.432, true rewards: #0: 4.032
[2025-04-17 16:02:56,204][38462] Avg episode reward: 4.432, avg true_objective: 4.032
[2025-04-17 16:02:56,288][38462] Num frames 2100...
[2025-04-17 16:02:56,378][38462] Num frames 2200...
[2025-04-17 16:02:56,480][38462] Num frames 2300...
[2025-04-17 16:02:56,581][38462] Num frames 2400...
[2025-04-17 16:02:56,703][38462] Avg episode rewards: #0: 4.607, true rewards: #0: 4.107
[2025-04-17 16:02:56,704][38462] Avg episode reward: 4.607, avg true_objective: 4.107
[2025-04-17 16:02:56,756][38462] Num frames 2500...
[2025-04-17 16:02:56,866][38462] Num frames 2600...
[2025-04-17 16:02:56,971][38462] Num frames 2700...
[2025-04-17 16:02:57,079][38462] Num frames 2800...
[2025-04-17 16:02:57,183][38462] Avg episode rewards: #0: 4.497, true rewards: #0: 4.069
[2025-04-17 16:02:57,184][38462] Avg episode reward: 4.497, avg true_objective: 4.069
[2025-04-17 16:02:57,247][38462] Num frames 2900...
[2025-04-17 16:02:57,379][38462] Num frames 3000...
[2025-04-17 16:02:57,473][38462] Num frames 3100...
[2025-04-17 16:02:57,573][38462] Num frames 3200...
[2025-04-17 16:02:57,667][38462] Avg episode rewards: #0: 4.415, true rewards: #0: 4.040
[2025-04-17 16:02:57,668][38462] Avg episode reward: 4.415, avg true_objective: 4.040
[2025-04-17 16:02:57,740][38462] Num frames 3300...
[2025-04-17 16:02:57,834][38462] Num frames 3400...
[2025-04-17 16:02:57,924][38462] Num frames 3500...
[2025-04-17 16:02:58,021][38462] Num frames 3600...
[2025-04-17 16:02:58,089][38462] Avg episode rewards: #0: 4.351, true rewards: #0: 4.018
[2025-04-17 16:02:58,090][38462] Avg episode reward: 4.351, avg true_objective: 4.018
[2025-04-17 16:02:58,178][38462] Num frames 3700...
[2025-04-17 16:02:58,280][38462] Num frames 3800...
[2025-04-17 16:02:58,385][38462] Num frames 3900...
[2025-04-17 16:02:58,479][38462] Num frames 4000...
[2025-04-17 16:02:58,531][38462] Avg episode rewards: #0: 4.300, true rewards: #0: 4.000
[2025-04-17 16:02:58,532][38462] Avg episode reward: 4.300, avg true_objective: 4.000
[2025-04-17 16:03:03,627][38462] Replay video saved to /home/uccacbo/Deep-RL-HF/train_dir/default_experiment/replay.mp4!
[2025-04-17 16:04:25,402][38462] Loading existing experiment configuration from /home/uccacbo/Deep-RL-HF/train_dir/default_experiment/config.json
[2025-04-17 16:04:25,403][38462] Adding new argument 'no_render'=True that is not in the saved config file!
[2025-04-17 16:04:25,404][38462] Adding new argument 'save_video'=True that is not in the saved config file!
[2025-04-17 16:04:25,405][38462] Adding new argument 'video_frames'=1000000000.0 that is not in the saved config file!
[2025-04-17 16:04:25,406][38462] Adding new argument 'video_name'=None that is not in the saved config file!
[2025-04-17 16:04:25,406][38462] Adding new argument 'max_num_frames'=100000 that is not in the saved config file!
[2025-04-17 16:04:25,407][38462] Adding new argument 'max_num_episodes'=10 that is not in the saved config file!
[2025-04-17 16:04:25,408][38462] Adding new argument 'push_to_hub'=True that is not in the saved config file!
[2025-04-17 16:04:25,409][38462] Adding new argument 'hf_repository'='c-bone/rl_course_vizdoom_health_gathering_supreme' that is not in the saved config file!
[2025-04-17 16:04:25,410][38462] Adding new argument 'policy_index'=0 that is not in the saved config file!
[2025-04-17 16:04:25,410][38462] Adding new argument 'eval_deterministic'=False that is not in the saved config file!
[2025-04-17 16:04:25,411][38462] Adding new argument 'train_script'=None that is not in the saved config file!
[2025-04-17 16:04:25,412][38462] Adding new argument 'enjoy_script'=None that is not in the saved config file!
[2025-04-17 16:04:25,413][38462] Using frameskip 1 and render_action_repeat=4 for evaluation
[2025-04-17 16:04:25,462][38462] RunningMeanStd input shape: (3, 72, 128)
[2025-04-17 16:04:25,467][38462] RunningMeanStd input shape: (1,)
[2025-04-17 16:04:25,484][38462] ConvEncoder: input_channels=3
[2025-04-17 16:04:25,521][38462] Conv encoder output size: 512
[2025-04-17 16:04:25,522][38462] Policy head output size: 512
[2025-04-17 16:04:25,546][38462] Loading state from checkpoint /home/uccacbo/Deep-RL-HF/train_dir/default_experiment/checkpoint_p0/checkpoint_000000001_4096.pth...
[2025-04-17 16:04:26,051][38462] Num frames 100...
[2025-04-17 16:04:26,217][38462] Num frames 200...
[2025-04-17 16:04:26,369][38462] Num frames 300...
[2025-04-17 16:04:26,574][38462] Avg episode rewards: #0: 3.840, true rewards: #0: 3.840
[2025-04-17 16:04:26,575][38462] Avg episode reward: 3.840, avg true_objective: 3.840
[2025-04-17 16:04:26,605][38462] Num frames 400...
[2025-04-17 16:04:26,774][38462] Num frames 500...
[2025-04-17 16:04:26,945][38462] Num frames 600...
[2025-04-17 16:04:27,102][38462] Num frames 700...
[2025-04-17 16:04:27,229][38462] Avg episode rewards: #0: 3.840, true rewards: #0: 3.840
[2025-04-17 16:04:27,230][38462] Avg episode reward: 3.840, avg true_objective: 3.840
[2025-04-17 16:04:27,286][38462] Num frames 800...
[2025-04-17 16:04:27,450][38462] Num frames 900...
[2025-04-17 16:04:27,620][38462] Num frames 1000...
[2025-04-17 16:04:27,798][38462] Num frames 1100...
[2025-04-17 16:04:27,952][38462] Avg episode rewards: #0: 3.840, true rewards: #0: 3.840
[2025-04-17 16:04:27,953][38462] Avg episode reward: 3.840, avg true_objective: 3.840
[2025-04-17 16:04:28,021][38462] Num frames 1200...
[2025-04-17 16:04:28,161][38462] Num frames 1300...
[2025-04-17 16:04:28,333][38462] Num frames 1400...
[2025-04-17 16:04:28,505][38462] Num frames 1500...
[2025-04-17 16:04:28,620][38462] Avg episode rewards: #0: 3.840, true rewards: #0: 3.840
[2025-04-17 16:04:28,621][38462] Avg episode reward: 3.840, avg true_objective: 3.840
[2025-04-17 16:04:28,729][38462] Num frames 1600...
[2025-04-17 16:04:28,895][38462] Num frames 1700...
[2025-04-17 16:04:29,022][38462] Num frames 1800...
[2025-04-17 16:04:29,187][38462] Num frames 1900...
[2025-04-17 16:04:29,376][38462] Avg episode rewards: #0: 4.168, true rewards: #0: 3.968
[2025-04-17 16:04:29,378][38462] Avg episode reward: 4.168, avg true_objective: 3.968
[2025-04-17 16:04:29,407][38462] Num frames 2000...
[2025-04-17 16:04:29,574][38462] Num frames 2100...
[2025-04-17 16:04:29,755][38462] Num frames 2200...
[2025-04-17 16:04:29,866][38462] Avg episode rewards: #0: 3.900, true rewards: #0: 3.733
[2025-04-17 16:04:29,867][38462] Avg episode reward: 3.900, avg true_objective: 3.733
[2025-04-17 16:04:29,984][38462] Num frames 2300...
[2025-04-17 16:04:30,150][38462] Num frames 2400...
[2025-04-17 16:04:30,311][38462] Num frames 2500...
[2025-04-17 16:04:30,476][38462] Num frames 2600...
[2025-04-17 16:04:30,565][38462] Avg episode rewards: #0: 3.891, true rewards: #0: 3.749
[2025-04-17 16:04:30,566][38462] Avg episode reward: 3.891, avg true_objective: 3.749
[2025-04-17 16:04:30,690][38462] Num frames 2700...
[2025-04-17 16:04:30,816][38462] Num frames 2800...
[2025-04-17 16:04:30,980][38462] Num frames 2900...
[2025-04-17 16:04:31,143][38462] Num frames 3000...
[2025-04-17 16:04:31,311][38462] Avg episode rewards: #0: 4.090, true rewards: #0: 3.840
[2025-04-17 16:04:31,312][38462] Avg episode reward: 4.090, avg true_objective: 3.840
[2025-04-17 16:04:31,360][38462] Num frames 3100...
[2025-04-17 16:04:33,597][38462] Num frames 3200...
[2025-04-17 16:04:33,721][38462] Num frames 3300...
[2025-04-17 16:04:33,886][38462] Num frames 3400...
[2025-04-17 16:04:34,033][38462] Avg episode rewards: #0: 4.062, true rewards: #0: 3.840
[2025-04-17 16:04:34,034][38462] Avg episode reward: 4.062, avg true_objective: 3.840
[2025-04-17 16:04:34,108][38462] Num frames 3500...
[2025-04-17 16:04:34,275][38462] Num frames 3600...
[2025-04-17 16:04:34,440][38462] Num frames 3700...
[2025-04-17 16:04:34,579][38462] Num frames 3800...
[2025-04-17 16:04:34,732][38462] Num frames 3900...
[2025-04-17 16:04:34,846][38462] Avg episode rewards: #0: 4.336, true rewards: #0: 3.936
[2025-04-17 16:04:34,847][38462] Avg episode reward: 4.336, avg true_objective: 3.936
[2025-04-17 16:04:40,292][38462] Replay video saved to /home/uccacbo/Deep-RL-HF/train_dir/default_experiment/replay.mp4!