Upload folder using huggingface_hub
Browse files- .gitattributes +1 -0
- 1_Pooling/config.json +7 -0
- README.md +126 -0
- config.json +27 -0
- config_sentence_transformers.json +7 -0
- epoch_losses.json +1 -0
- eval/binary_classification_evaluation_results.csv +10 -0
- model.safetensors +3 -0
- modules.json +14 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +63 -0
- vocab.txt +3 -0
.gitattributes
CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
vocab.txt filter=lfs diff=lfs merge=lfs -text
|
1_Pooling/config.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"word_embedding_dimension": 768,
|
3 |
+
"pooling_mode_cls_token": true,
|
4 |
+
"pooling_mode_mean_tokens": false,
|
5 |
+
"pooling_mode_max_tokens": false,
|
6 |
+
"pooling_mode_mean_sqrt_len_tokens": false
|
7 |
+
}
|
README.md
ADDED
@@ -0,0 +1,126 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
pipeline_tag: sentence-similarity
|
3 |
+
tags:
|
4 |
+
- sentence-transformers
|
5 |
+
- feature-extraction
|
6 |
+
- sentence-similarity
|
7 |
+
- transformers
|
8 |
+
|
9 |
+
---
|
10 |
+
|
11 |
+
# {MODEL_NAME}
|
12 |
+
|
13 |
+
This is a [sentence-transformers](https://www.SBERT.net) model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
|
14 |
+
|
15 |
+
<!--- Describe your model here -->
|
16 |
+
|
17 |
+
## Usage (Sentence-Transformers)
|
18 |
+
|
19 |
+
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
|
20 |
+
|
21 |
+
```
|
22 |
+
pip install -U sentence-transformers
|
23 |
+
```
|
24 |
+
|
25 |
+
Then you can use the model like this:
|
26 |
+
|
27 |
+
```python
|
28 |
+
from sentence_transformers import SentenceTransformer
|
29 |
+
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
+
|
31 |
+
model = SentenceTransformer('{MODEL_NAME}')
|
32 |
+
embeddings = model.encode(sentences)
|
33 |
+
print(embeddings)
|
34 |
+
```
|
35 |
+
|
36 |
+
|
37 |
+
|
38 |
+
## Usage (HuggingFace Transformers)
|
39 |
+
Without [sentence-transformers](https://www.SBERT.net), you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
|
40 |
+
|
41 |
+
```python
|
42 |
+
from transformers import AutoTokenizer, AutoModel
|
43 |
+
import torch
|
44 |
+
|
45 |
+
|
46 |
+
def cls_pooling(model_output, attention_mask):
|
47 |
+
return model_output[0][:,0]
|
48 |
+
|
49 |
+
|
50 |
+
# Sentences we want sentence embeddings for
|
51 |
+
sentences = ['This is an example sentence', 'Each sentence is converted']
|
52 |
+
|
53 |
+
# Load model from HuggingFace Hub
|
54 |
+
tokenizer = AutoTokenizer.from_pretrained('{MODEL_NAME}')
|
55 |
+
model = AutoModel.from_pretrained('{MODEL_NAME}')
|
56 |
+
|
57 |
+
# Tokenize sentences
|
58 |
+
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
|
59 |
+
|
60 |
+
# Compute token embeddings
|
61 |
+
with torch.no_grad():
|
62 |
+
model_output = model(**encoded_input)
|
63 |
+
|
64 |
+
# Perform pooling. In this case, cls pooling.
|
65 |
+
sentence_embeddings = cls_pooling(model_output, encoded_input['attention_mask'])
|
66 |
+
|
67 |
+
print("Sentence embeddings:")
|
68 |
+
print(sentence_embeddings)
|
69 |
+
```
|
70 |
+
|
71 |
+
|
72 |
+
|
73 |
+
## Evaluation Results
|
74 |
+
|
75 |
+
<!--- Describe how your model was evaluated -->
|
76 |
+
|
77 |
+
For an automated evaluation of this model, see the *Sentence Embeddings Benchmark*: [https://seb.sbert.net](https://seb.sbert.net?model_name={MODEL_NAME})
|
78 |
+
|
79 |
+
|
80 |
+
## Training
|
81 |
+
The model was trained with the parameters:
|
82 |
+
|
83 |
+
**DataLoader**:
|
84 |
+
|
85 |
+
`torch.utils.data.dataloader.DataLoader` of length 1229 with parameters:
|
86 |
+
```
|
87 |
+
{'batch_size': 16, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
88 |
+
```
|
89 |
+
|
90 |
+
**Loss**:
|
91 |
+
|
92 |
+
`sentence_transformers.losses.TripletLoss.TripletLoss` with parameters:
|
93 |
+
```
|
94 |
+
{'distance_metric': 'TripletDistanceMetric.EUCLIDEAN', 'triplet_margin': 5}
|
95 |
+
```
|
96 |
+
|
97 |
+
Parameters of the fit()-Method:
|
98 |
+
```
|
99 |
+
{
|
100 |
+
"epochs": 3,
|
101 |
+
"evaluation_steps": 500,
|
102 |
+
"evaluator": "sentence_transformers.evaluation.BinaryClassificationEvaluator.BinaryClassificationEvaluator",
|
103 |
+
"max_grad_norm": 1,
|
104 |
+
"optimizer_class": "<class 'torch.optim.adamw.AdamW'>",
|
105 |
+
"optimizer_params": {
|
106 |
+
"lr": 3e-05
|
107 |
+
},
|
108 |
+
"scheduler": "WarmupLinear",
|
109 |
+
"steps_per_epoch": null,
|
110 |
+
"warmup_steps": 50,
|
111 |
+
"weight_decay": 0.01
|
112 |
+
}
|
113 |
+
```
|
114 |
+
|
115 |
+
|
116 |
+
## Full Model Architecture
|
117 |
+
```
|
118 |
+
SentenceTransformer(
|
119 |
+
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
|
120 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
|
121 |
+
)
|
122 |
+
```
|
123 |
+
|
124 |
+
## Citing & Authors
|
125 |
+
|
126 |
+
<!--- Describe where people can find more information -->
|
config.json
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "dicta-il/dictabert",
|
3 |
+
"architectures": [
|
4 |
+
"BertModel"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.1,
|
7 |
+
"classifier_dropout": null,
|
8 |
+
"gradient_checkpointing": false,
|
9 |
+
"hidden_act": "gelu",
|
10 |
+
"hidden_dropout_prob": 0.1,
|
11 |
+
"hidden_size": 768,
|
12 |
+
"initializer_range": 0.02,
|
13 |
+
"intermediate_size": 3072,
|
14 |
+
"layer_norm_eps": 1e-12,
|
15 |
+
"max_position_embeddings": 512,
|
16 |
+
"model_type": "bert",
|
17 |
+
"newmodern": true,
|
18 |
+
"num_attention_heads": 12,
|
19 |
+
"num_hidden_layers": 12,
|
20 |
+
"pad_token_id": 0,
|
21 |
+
"position_embedding_type": "absolute",
|
22 |
+
"torch_dtype": "float32",
|
23 |
+
"transformers_version": "4.36.2",
|
24 |
+
"type_vocab_size": 2,
|
25 |
+
"use_cache": true,
|
26 |
+
"vocab_size": 128000
|
27 |
+
}
|
config_sentence_transformers.json
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"__version__": {
|
3 |
+
"sentence_transformers": "2.2.2",
|
4 |
+
"transformers": "4.36.2",
|
5 |
+
"pytorch": "2.1.2+cu121"
|
6 |
+
}
|
7 |
+
}
|
epoch_losses.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"log_history": [{"epoch": 0, "loss": 0.5552091079576894}, {"epoch": 1, "loss": 0.14668889793562054}, {"epoch": 2, "loss": 0.03926950940472795}]}
|
eval/binary_classification_evaluation_results.csv
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
epoch,steps,cossim_accuracy,cossim_accuracy_threshold,cossim_f1,cossim_precision,cossim_recall,cossim_f1_threshold,cossim_ap,manhattan_accuracy,manhattan_accuracy_threshold,manhattan_f1,manhattan_precision,manhattan_recall,manhattan_f1_threshold,manhattan_ap,euclidean_accuracy,euclidean_accuracy_threshold,euclidean_f1,euclidean_precision,euclidean_recall,euclidean_f1_threshold,euclidean_ap,dot_accuracy,dot_accuracy_threshold,dot_f1,dot_precision,dot_recall,dot_f1_threshold,dot_ap
|
2 |
+
0,500,0.9357277882797732,0.5196293592453003,0.9356060606060606,0.9285714285714286,0.9427480916030534,0.5196293592453003,0.9742855284077233,0.9357277882797732,343.64703369140625,0.9354838709677419,0.930188679245283,0.9408396946564885,348.995361328125,0.9764954223498737,0.9357277882797732,16.496044158935547,0.9356060606060606,0.9285714285714286,0.9427480916030534,16.496044158935547,0.976002940633654,0.9310018903591682,144.704345703125,0.9313264346190029,0.9183673469387755,0.9446564885496184,144.704345703125,0.9657047063732095
|
3 |
+
0,1000,0.9328922495274102,0.4960457980632782,0.9334582942830365,0.9171270718232044,0.950381679389313,0.4960457980632782,0.9775104352100861,0.9347826086956522,352.5271911621094,0.9355742296918768,0.9159049360146252,0.9561068702290076,364.15960693359375,0.9798455746293088,0.9385633270321361,17.329761505126953,0.9390815370196813,0.9226519337016574,0.9561068702290076,17.329761505126953,0.9795656100996063,0.9262759924385633,145.15023803710938,0.9273229070837167,0.8952042628774423,0.9618320610687023,134.46905517578125,0.9704276692608728
|
4 |
+
0,-1,0.9366729678638941,0.4899904131889343,0.9370892018779342,0.922365988909427,0.9522900763358778,0.4899904131889343,0.9743229436211243,0.9385633270321361,361.84490966796875,0.9398704902867715,0.9120287253141831,0.9694656488549618,381.13848876953125,0.9768196593404925,0.9404536862003781,17.394351959228516,0.94062205466541,0.9292364990689013,0.9522900763358778,17.394351959228516,0.9770181914372765,0.9347826086956522,147.9871368408203,0.9352112676056338,0.9205175600739371,0.950381679389313,147.9871368408203,0.9621333877078682
|
5 |
+
1,500,0.9404536862003781,0.4546582102775574,0.941066417212348,0.9229357798165138,0.9599236641221374,0.4546582102775574,0.979020052998192,0.943289224952741,382.796875,0.9443413729128015,0.9187725631768953,0.9713740458015268,384.9874572753906,0.9809352479972135,0.941398865784499,18.785140991210938,0.9431192660550459,0.9081272084805654,0.9809160305343512,19.05669403076172,0.9805054188156175,0.9376181474480151,129.74554443359375,0.9388888888888889,0.9118705035971223,0.9675572519083969,129.74554443359375,0.9727834883885278
|
6 |
+
1,1000,0.94234404536862,0.4975280463695526,0.9419600380589915,0.9392789373814042,0.9446564885496184,0.48240917921066284,0.9842468127351804,0.946124763705104,362.0586242675781,0.9455587392550143,0.9464627151051626,0.9446564885496184,362.0586242675781,0.9857615586624637,0.947069943289225,17.691368103027344,0.9465648854961832,0.9465648854961832,0.9465648854961832,17.691368103027344,0.9857418511931075,0.9385633270321361,147.11984252929688,0.9386213408876298,0.9289719626168225,0.9484732824427481,141.555908203125,0.9795327664680187
|
7 |
+
1,-1,0.9489603024574669,0.42314964532852173,0.949438202247191,0.9319852941176471,0.9675572519083969,0.42314964532852173,0.9872732814993084,0.9508506616257089,380.796630859375,0.9508506616257089,0.9419475655430711,0.9599236641221374,380.796630859375,0.9885179108890427,0.9499054820415879,18.473026275634766,0.9501411100658514,0.9369202226345084,0.9637404580152672,18.539331436157227,0.988287040911294,0.947069943289225,124.73574829101562,0.9478584729981377,0.9254545454545454,0.9713740458015268,123.55701446533203,0.9840364744375375
|
8 |
+
2,500,0.941398865784499,0.37280166149139404,0.9431192660550459,0.9081272084805654,0.9809160305343512,0.37280166149139404,0.9846145262965152,0.944234404536862,396.7467041015625,0.9456221198156682,0.9144385026737968,0.9790076335877863,396.7467041015625,0.9864332319474167,0.945179584120983,19.376388549804688,0.9464944649446494,0.9160714285714285,0.9790076335877863,19.376388549804688,0.9859387719578248,0.941398865784499,121.46650695800781,0.9429097605893185,0.9110320284697508,0.9770992366412213,121.46650695800781,0.9793170511018084
|
9 |
+
2,1000,0.941398865784499,0.4293143153190613,0.9421641791044776,0.9215328467153284,0.9637404580152672,0.4272366762161255,0.9833760894408956,0.946124763705104,376.1376037597656,0.946073793755913,0.9380863039399625,0.9541984732824428,376.1376037597656,0.9856706557044219,0.943289224952741,18.11858558654785,0.9436749769159742,0.9141323792486583,0.9751908396946565,19.424821853637695,0.985209911755514,0.9366729678638941,132.0089111328125,0.9375582479030755,0.9162112932604736,0.9599236641221374,132.0089111328125,0.9767609071017523
|
10 |
+
2,-1,0.944234404536862,0.4578818082809448,0.9444967074317969,0.9313543599257885,0.9580152671755725,0.4498842656612396,0.9848264672647637,0.946124763705104,370.8468322753906,0.9464788732394366,0.9316081330868762,0.9618320610687023,382.0978698730469,0.9868899736668068,0.945179584120983,17.448890686035156,0.9458218549127639,0.911504424778761,0.982824427480916,19.76630210876465,0.9863880902389214,0.9404536862003781,138.0528564453125,0.9407337723424272,0.9276437847866419,0.9541984732824428,138.0528564453125,0.9790914146121825
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d4df38204b69dd9d31b93c7de767af4d650fb61d5ae820826e98fd3958a3fef
|
3 |
+
size 737403752
|
modules.json
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"idx": 0,
|
4 |
+
"name": "0",
|
5 |
+
"path": "",
|
6 |
+
"type": "sentence_transformers.models.Transformer"
|
7 |
+
},
|
8 |
+
{
|
9 |
+
"idx": 1,
|
10 |
+
"name": "1",
|
11 |
+
"path": "1_Pooling",
|
12 |
+
"type": "sentence_transformers.models.Pooling"
|
13 |
+
}
|
14 |
+
]
|
sentence_bert_config.json
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"max_seq_length": 512,
|
3 |
+
"do_lower_case": false
|
4 |
+
}
|
special_tokens_map.json
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cls_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"mask_token": {
|
10 |
+
"content": "[MASK]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "[PAD]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"sep_token": {
|
24 |
+
"content": "[SEP]",
|
25 |
+
"lstrip": false,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"unk_token": {
|
31 |
+
"content": "[UNK]",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
}
|
37 |
+
}
|
tokenizer.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
tokenizer_config.json
ADDED
@@ -0,0 +1,63 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "[UNK]",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "[CLS]",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[SEP]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[PAD]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": false,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
},
|
43 |
+
"5": {
|
44 |
+
"content": "[BLANK]",
|
45 |
+
"lstrip": false,
|
46 |
+
"normalized": false,
|
47 |
+
"rstrip": false,
|
48 |
+
"single_word": false,
|
49 |
+
"special": true
|
50 |
+
}
|
51 |
+
},
|
52 |
+
"clean_up_tokenization_spaces": true,
|
53 |
+
"cls_token": "[CLS]",
|
54 |
+
"do_lower_case": true,
|
55 |
+
"mask_token": "[MASK]",
|
56 |
+
"model_max_length": 512,
|
57 |
+
"pad_token": "[PAD]",
|
58 |
+
"sep_token": "[SEP]",
|
59 |
+
"strip_accents": null,
|
60 |
+
"tokenize_chinese_chars": true,
|
61 |
+
"tokenizer_class": "BertTokenizer",
|
62 |
+
"unk_token": "[UNK]"
|
63 |
+
}
|
vocab.txt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0fb90bfa35244d26f0065d1fcd0b5becc3da3d44d616a7e2aacaf6320b9fa2d0
|
3 |
+
size 1500244
|