AvivBick commited on
Commit
5c6a3ec
·
verified ·
1 Parent(s): 8e924a5

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +47 -3
README.md CHANGED
@@ -1,3 +1,47 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ ---
4
+
5
+ # Llamba Models
6
+
7
+ The Llamba models are part of Cartesia's [Edge](https://github.com/cartesia-ai/edge) library, designed for efficient, high-performance machine learning applications.
8
+
9
+ For more details, refer to the [paper](#).
10
+
11
+ ---
12
+
13
+ ## Usage
14
+
15
+ ### Llamba on PyTorch
16
+
17
+ To use Llamba with PyTorch:
18
+
19
+ 1. Install the required package:
20
+ ```bash
21
+ pip install --no-binary :all: cartesia-pytorch
22
+ ```
23
+ 2. Load and run the model
24
+ ```python
25
+ from transformers import AutoTokenizer
26
+ from cartesia_pytorch.Llamba.llamba import LlambaLMHeadModel
27
+
28
+ model = LlambaLMHeadModel.from_pretrained("AvivBick/Llamba-8B", strict=True).to('cuda')
29
+ tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B")
30
+ input_ids = tokenizer("Hello, my name is", return_tensors="pt").input_ids
31
+ input_ids = input_ids.to('cuda')
32
+ output = model.generate(input_ids, max_length=100)[0]
33
+ print(tokenizer.decode(output, skip_special_tokens=True))
34
+ ```
35
+
36
+
37
+ ### Llamba on MLX
38
+
39
+ To run Llamba with the Metal framework:
40
+ _(Add specific instructions here when available.)_
41
+
42
+ ---
43
+
44
+ ### Evaluations
45
+
46
+ Details on model performance, benchmarks, and evaluation metrics can be found in the [paper link](#).
47
+ _(Expand on this section if specific results or datasets are available.)_