File size: 12,671 Bytes
36f863d
 
 
 
55e132b
36f863d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55e132b
36f863d
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
---
language:
- en
base_model:
- OpenGVLab/InternVL2_5-8B
tags:
- video
- emotion
---

# 🎭 Libra-Emo Model

**A Multimodal Large Language Model for Fine-Grained Negative Emotion Detection**

This is the official model release of Libra-Emo, a multimodal large language model for fine-grained negative emotion detection. The model is built upon [InternVL 2.5](https://github.com/OpenGVLab/InternVL) and fine-tuned on our [Libra-Emo Dataset](https://huggingface.co/datasets/caskcsg/Libra-Emo).

## πŸ“ Model Description

Libra-Emo Model is designed to understand and analyze emotions in video content. It can:

- Recognize **13** fine-grained emotion categories
- Provide detailed **explanations** for emotion classifications
- Process both visual and textual (subtitle) information
- Handle real-world video scenarios with complex emotional expressions

## πŸš€ Usage

### Environment Setup

Our model is tested with CUDA 12.1. To set up the environment:

```bash
# Create and activate conda environment
conda create -n libra-emo python=3.10
conda activate libra-emo

# Clone and install InternVL dependencies
git clone https://github.com/OpenGVLab/InternVL.git
cd InternVL
pip install -r requirements/internvl_chat.txt
```

### Usage Example

Here's a complete example of how to use Libra-Emo Model for video emotion analysis:

```python
import numpy as np
import torch
import torchvision.transforms as T
from decord import VideoReader, cpu
from PIL import Image
from torchvision.transforms.functional import InterpolationMode
from transformers import AutoModel, AutoTokenizer

def build_transform(input_size):
    MEAN = (0.485, 0.456, 0.406)
    STD = (0.229, 0.224, 0.225)
    transform = T.Compose(
        [
            T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img),
            T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
            T.ToTensor(),
            T.Normalize(mean=MEAN, std=STD),
        ]
    )
    return transform

def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
    best_ratio_diff = float("inf")
    best_ratio = (1, 1)
    area = width * height
    for ratio in target_ratios:
        target_aspect_ratio = ratio[0] / ratio[1]
        ratio_diff = abs(aspect_ratio - target_aspect_ratio)
        if ratio_diff < best_ratio_diff:
            best_ratio_diff = ratio_diff
            best_ratio = ratio
        elif ratio_diff == best_ratio_diff:
            if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
                best_ratio = ratio
    return best_ratio

def dynamic_preprocess(
    image, min_num=1, max_num=12, image_size=448, use_thumbnail=False
):
    orig_width, orig_height = image.size
    aspect_ratio = orig_width / orig_height

    # calculate the existing image aspect ratio
    target_ratios = set(
        (i, j)
        for n in range(min_num, max_num + 1)
        for i in range(1, n + 1)
        for j in range(1, n + 1)
        if i * j <= max_num and i * j >= min_num
    )
    target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])

    # find the closest aspect ratio to the target
    target_aspect_ratio = find_closest_aspect_ratio(
        aspect_ratio, target_ratios, orig_width, orig_height, image_size
    )

    # calculate the target width and height
    target_width = image_size * target_aspect_ratio[0]
    target_height = image_size * target_aspect_ratio[1]
    blocks = target_aspect_ratio[0] * target_aspect_ratio[1]

    # resize the image
    resized_img = image.resize((target_width, target_height))
    processed_images = []
    for i in range(blocks):
        box = (
            (i % (target_width // image_size)) * image_size,
            (i // (target_width // image_size)) * image_size,
            ((i % (target_width // image_size)) + 1) * image_size,
            ((i // (target_width // image_size)) + 1) * image_size,
        )
        # split the image
        split_img = resized_img.crop(box)
        processed_images.append(split_img)
    assert len(processed_images) == blocks
    if use_thumbnail and len(processed_images) != 1:
        thumbnail_img = image.resize((image_size, image_size))
        processed_images.append(thumbnail_img)
    return processed_images

def load_image(image_file, input_size=448, max_num=12):
    image = Image.open(image_file).convert("RGB")
    transform = build_transform(input_size=input_size)
    images = dynamic_preprocess(
        image, image_size=input_size, use_thumbnail=True, max_num=max_num
    )
    pixel_values = [transform(image) for image in images]
    pixel_values = torch.stack(pixel_values)
    return pixel_values

def get_index(bound, fps, max_frame, first_idx=0, num_segments=32):
    if bound:
        start, end = bound[0], bound[1]
    else:
        start, end = -100000, 100000
    start_idx = max(first_idx, round(start * fps))
    end_idx = min(round(end * fps), max_frame)
    seg_size = float(end_idx - start_idx) / num_segments
    frame_indices = np.array(
        [
            int(start_idx + (seg_size / 2) + np.round(seg_size * idx))
            for idx in range(num_segments)
        ]
    )
    return frame_indices

def load_video(video_path, bound=None, input_size=448, max_num=1, num_segments=32):
    vr = VideoReader(video_path, ctx=cpu(0), num_threads=1)
    max_frame = len(vr) - 1
    fps = float(vr.get_avg_fps())

    pixel_values_list, num_patches_list = [], []
    transform = build_transform(input_size=input_size)
    frame_indices = get_index(
        bound, fps, max_frame, first_idx=0, num_segments=num_segments
    )
    for frame_index in frame_indices:
        img = Image.fromarray(vr[frame_index].asnumpy()).convert("RGB")
        img = dynamic_preprocess(
            img, image_size=input_size, use_thumbnail=True, max_num=max_num
        )
        pixel_values = [transform(tile) for tile in img]
        pixel_values = torch.stack(pixel_values)
        num_patches_list.append(pixel_values.shape[0])
        pixel_values_list.append(pixel_values)
    pixel_values = torch.cat(pixel_values_list)
    return pixel_values, num_patches_list
    

# Step 1: load the model
# If you have an 80G A100 GPU, you can put the entire model on a single GPU.
model_path = "caskcsg/Libra-Emo-8B"
model = AutoModel.from_pretrained(
    model_path,
    torch_dtype=torch.bfloat16,
    low_cpu_mem_usage=True,
    trust_remote_code=True,
    device_map="cuda:0"
)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(
    model_path, trust_remote_code=True, use_fast=False
)

# Step 2: load the video
video_path = "your_video_path" # change to your video path
pixel_values, num_patches_list = load_video(
    video_path, num_segments=16, max_num=1
)
pixel_values = pixel_values.to(torch.bfloat16).to(model.device)
video_prefix = "".join(
    [f"Frame-{i+1}: <image>\n" for i in range(len(num_patches_list))]
)

# Step 3: set the question
subtitle = None # change to your subtitle (subtitle is optional, if you don't have subtitle, please set it to None)
if subtitle is None:
    question = (
        video_prefix
        + "The above is a video. Please accurately identify the emotional label expressed by the people in the video. Emotional labels include should be limited to: happy, excited, angry, disgusted, hateful, surprised, amazed, frustrated, sad, fearful, despairful, ironic, neutral. The output format should be:\n[label]\n[explanation]"
    )
else:
    question = (
        video_prefix
        + f"The above is a video. The video's subtitle is '{subtitle}', which maybe the words spoken by the person. Please accurately identify the emotional label expressed by the people in the video. Emotional labels include should be limited to: happy, excited, angry, disgusted, hateful, surprised, amazed, frustrated, sad, fearful, despairful, ironic, neutral. The output format should be:\n[label]\n[explanation]"
    )

# Step 4: generate the response
response, history = model.chat(
    tokenizer,
    pixel_values,
    question,
    dict(max_new_tokens=512, do_sample=False),
    num_patches_list=num_patches_list,
    history=None,
    return_history=True,
)
print(response)
```

The model will output the emotion label and explanation in the following format:
```
[label]
[explanation]
```

**Note**: If you aim to obtain emotion labels more quickly without requiring explanations, consider reducing the `max_new_tokens` value in the generation configuration.

## πŸ“Š Performance Comparison

We evaluate our models on the [Libra-Emo Bench](https://huggingface.co/datasets/caskcsg/Libra-Emo), comparing with both closed-source and open-source models. The evaluation metrics include accuracy and F1 scores for all emotions (13 classes) and negative emotions (8 classes).

### Performance Comparison of MLLMs on Libra-Emo Bench

| **Model**                  | **Accuracy** | **Macro-F1** | **Weighted-F1** | **Accuracy (Neg)** | **Macro-F1 (Neg)** | **Weighted-F1 (Neg)** |
|:--------------------------|:------------:|:------------:|:---------------:|:------------------:|:------------------:|:---------------------:|
| ***Closed-Source Models*** |              |              |                 |                    |                    |                       |
| Gemini-2.0-Flash           | **65.67**    | **63.98**    | **64.51**       | 65.00              | 62.97              | 63.86                 |
| Gemini-1.5-Flash           | 64.41        | 62.36        | 62.52           | 61.32              | 58.85              | 58.74                 |
| GPT-4o                     | 62.99        | 63.56        | 63.32           | **67.89**          | **67.54**          | **67.89**             |
| Claude-3.5-Sonnet          | 52.13        | 48.38        | 49.38           | 49.47              | 49.32              | 50.50                 |
| ***Open-Source Models***   |              |              |                 |                    |                    |                       |
| LLaVA-Video-7B-Qwen2       | 33.39        | 30.14        | 31.25           | 22.11              | 25.55              | 26.65                 |
| MiniCPM-o 2.6 (8B)         | 42.83        | 40.23        | 40.26           | 40.53              | 37.29              | 38.00                 |
| Qwen2.5-VL-7B              | 47.56        | 44.18        | 43.68           | 41.32              | 39.07              | 38.50                 |
| NVILA-8B                   | 41.89        | 35.92        | 36.01           | 42.89              | 32.83              | 33.88                 |
| Phi-3.5-vision-instruct    | 53.39        | 51.23        | 51.16           | **52.89**          | **49.97**          | **49.98**             |
| InternVL-2.5-1B            | 23.46        | 17.33        | 18.14           | 22.11              | 16.48              | 17.26                 |
| InternVL-2.5-2B            | 25.98        | 22.31        | 22.19           | 30.79              | 24.97              | 24.59                 |
| InternVL-2.5-4B            | 42.99        | 39.58        | 38.81           | 37.89              | 38.78              | 38.55                 |
| InternVL-2.5-8B            | **54.96**    | **51.42**    | **51.64**       | 50.53              | 47.07              | 47.22                 |
| ***Fine-Tuned on Libra-Emo*** |            |              |                 |                    |                    |                       |
| Libra-Emo-1B               | 53.54 (↑30.08) | 49.44 (↑32.11) | 50.19 (↑32.05) | 46.84 (↑24.73)     | 41.53 (↑25.05)     | 42.25 (↑24.99)        |
| Libra-Emo-2B               | 56.38 (↑30.40) | 53.60 (↑31.29) | 53.90 (↑31.71) | 50.26 (↑19.47)     | 48.79 (↑23.82)     | 48.91 (↑24.32)        |
| Libra-Emo-4B               | 65.20 (↑22.21) | 64.12 (↑24.54) | 64.41 (↑25.60) | 60.79 (↑22.90) | 61.30 (↑22.52) | 61.61 (↑23.06)        |
| **Libra-Emo-8B**           | **71.18 (↑16.22)** | **70.51 (↑19.09)** | **70.71 (↑19.07)** | **70.53 (↑20.00)** | **69.94 (↑22.87)** | **70.14 (↑22.92)**    |

### Key Findings

1. Our Libra-Emo models significantly outperform their base InternVL models, with improvements up to 30% in accuracy and F1 scores.
2. The 8B version achieves the best performance, reaching 71.18% accuracy and 70.51% macro-F1 score on all emotions.
3. For negative emotions, our models show strong performance with up to 70.53% accuracy and 70.14% weighted-F1 score.
4. The performance scales well with model size, showing consistent improvements from 1B to 8B parameters.

> **Note**: Our technical report with detailed methodology and analysis will be released soon.