|
|
|
|
|
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments |
|
from datasets import load_dataset, load_from_disk |
|
|
|
|
|
model_path = "./results/checkpoint-12000" |
|
model = AutoModelForCausalLM.from_pretrained(model_path) |
|
tokenizer = AutoTokenizer.from_pretrained("tinyllama/tinyllama-1.1b-chat-v1.0") |
|
|
|
|
|
input_text = "ae left to go to ireland and found a fairy" |
|
input_ids = tokenizer.encode(input_text, return_tensors='pt') |
|
output = model.generate( |
|
input_ids=tokenizer.encode(input_text, return_tensors="pt"), |
|
max_length=400, |
|
num_return_sequences=1, |
|
temperature=0.7, |
|
top_k=50, |
|
top_p=0.95, |
|
do_sample=True, |
|
num_beams=5 |
|
) |
|
|
|
decoded_output = tokenizer.decode(output[0], skip_special_tokens=True) |
|
print(decoded_output) |