from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments from datasets import load_dataset, load_from_disk #post training model_path = "./results/checkpoint-12000" model = AutoModelForCausalLM.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained("tinyllama/tinyllama-1.1b-chat-v1.0") input_text = "ae left to go to ireland and found a fairy" input_ids = tokenizer.encode(input_text, return_tensors='pt') output = model.generate( input_ids=tokenizer.encode(input_text, return_tensors="pt"), max_length=400, num_return_sequences=1, temperature=0.7, top_k=50, top_p=0.95, do_sample=True, num_beams=5 ) decoded_output = tokenizer.decode(output[0], skip_special_tokens=True) print(decoded_output)