from transformers import AutoTokenizer, AutoModelForCausalLM, Trainer, TrainingArguments from datasets import load_dataset, load_from_disk #post training model_path = "./results/checkpoint-152000" model = AutoModelForCausalLM.from_pretrained(model_path) tokenizer = AutoTokenizer.from_pretrained("tinyllama/tinyllama-1.1b-chat-v1.0") input_text = """ H: After all that we have gone through, the truth is written literally and not literately. i have gazed navally and looked to the stars above. How would you consider the case of man today amidst all this chaotica? B: """ input_ids = tokenizer.encode(input_text, return_tensors='pt') output = model.generate( input_ids=tokenizer.encode(input_text, return_tensors="pt"), max_length=1000, num_return_sequences=1, no_repeat_ngram_size=5, temperature=0.9, top_k=50, top_p=0.98, do_sample=True, num_beams=10 ) decoded_output = tokenizer.decode(output[0], skip_special_tokens=True) print(decoded_output)