--- language: - zh tags: - Seq2SeqLM - 古文 - 文言文 - 中国古代官职地名拆分 - ancient - classical license: cc-by-nc-sa-4.0 --- # OTAS (Office Title Address Splitter) [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/drive/1UoG3QebyBlK6diiYckiQv-5dRB9dA4iv?usp=sharing) Our model OTAS (Office Title Address Splitter) is a Named Entity Recognition Classical Chinese language model that is intended to split the address portion in Classical Chinese office titles.. This model is first inherited from raynardj/classical-chinese-punctuation-guwen-biaodian Classical Chinese punctuation model, and finetuned using over a 25,000 high-quality punctuation pairs collected CBDB group (China Biographical Database). ### Sample input txt file The sample input txt file can be downloaded here: https://huggingface.co/cbdb/OfficeTitleAddressSplitter/blob/main/input.txt ### How to use Here is how to use this model to get the features of a given text in PyTorch: 1. Import model and packages ```python from transformers import AutoTokenizer, AutoModelForTokenClassification PRETRAINED = "cbdb/OfficeTitleAddressSplitter" tokenizer = AutoTokenizer.from_pretrained(PRETRAINED) model = AutoModelForTokenClassification.from_pretrained(PRETRAINED) ``` 2. Load Data ```python # Load your data here test_list = ['漢軍鑲黃旗副都統', '兵部右侍郎', '盛京戶部侍郎'] ``` 3. Make a prediction ```python def predict_class(test): tokens_test = tokenizer.encode_plus( test, add_special_tokens=True, return_attention_mask=True, padding=True, max_length=128, return_tensors='pt', truncation=True ) test_seq = torch.tensor(tokens_test['input_ids']) test_mask = torch.tensor(tokens_test['attention_mask']) inputs = { "input_ids": test_seq, "attention_mask": test_mask } with torch.no_grad(): # print(inputs.shape) outputs = model(**inputs) outputs = outputs.logits.detach().cpu().numpy() softmax_score = softmax(outputs) softmax_score = np.argmax(softmax_score, axis=2)[0] return test_seq, softmax_score for test_sen0 in test_list: test_seq, pred_class_proba = predict_class(test_sen0) test_sen = tokenizer.decode(test_seq[0]).split() label = [idx2label[i] for i in pred_class_proba] element_to_find = '。' if element_to_find in label: index = label.index(element_to_find) test_sen_pred = [i for i in test_sen0] test_sen_pred.insert(index, element_to_find) test_sen_pred = ''.join(test_sen_pred) else: test_sen_pred = [i for i in test_sen0] test_sen_pred = ''.join(test_sen_pred) print(test_sen_pred) ``` 漢軍鑲黃旗。副都統
兵部右侍郎
盛京。戶部侍郎
### Authors Queenie Luo (queenieluo[at]g.harvard.edu)
Hongsu Wang
Peter Bol
CBDB Group ### License Copyright (c) 2023 CBDB Except where otherwise noted, content on this repository is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0). To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/ or send a letter to Creative Commons, PO Box 1866, Mountain View, CA 94042, USA.