Upload PPO Lunar Lander trained agent.
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 260.37 +/- 20.20
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcb616dad40>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcb616dadd0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcb616dae60>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcb616daef0>", "_build": "<function ActorCriticPolicy._build at 0x7fcb616daf80>", "forward": "<function ActorCriticPolicy.forward at 0x7fcb616db010>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcb616db0a0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcb616db130>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcb616db1c0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcb616db250>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcb616db2e0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcb616db370>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fcb616dd800>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000.0, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1685812550426451416, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKWQwL7A7Mo+eD3TPQ5Ewb5MZwi+GsvHPQAAAAAAAAAABlINPvYzXD3zK42+XrsXvg1kIb3udzu9AAAAAAAAAABAzmU+P5SFP/BInT4m5Ra/f+0XPpVcfDwAAAAAAAAAAHOXUL4Dgc8+Zme9vR7wm76T86q93W4wvAAAAAAAAAAAM9LnvFhnoD/Wg+i9vhgOv2dmmb240Xs9AAAAAAAAAAANZaw9FFzquriJKz1T89C9IcO4PL7Ynr4AAAAAAAAAAAZYNL40oJw+zMjAPHZeZb7NsoK959ZCuwAAAAAAAAAArQItvk64pryw0GK7V9kHustTET6IJ+E6AACAPwAAgD8g64w+QsuTPzpe7D67VRq/CHc4PrWw3z0AAAAAAAAAAE27MT47hI+8pVTSugU5KzlSzAK+CBQOOgAAgD8AAIA/s8tlPcCRnT/Kqm4+Vi8dv6ccFD01asU9AAAAAAAAAACaKfE7jV+rP3odnD1nG+G+pwX5ODywKbwAAAAAAAAAAFNRLD6OXKG8+80uOc3WmbcQXg++tVV0uAAAgD8AAIA/WnlpPnxYmj4Ftbu9mxmPvmOqKD0+2a68AAAAAAAAAAAgJyw+iMiNvHKdPrvqHJI5mdT2vYZWgToAAIA/AACAP3YnT77jPBE9XcDrvMny7L0ykKC9mn2IvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG0+fms/6fuMAWyUS+qMAXSUR0CgoHcHObAldX2UKGgGR0Bxc9RwZOzqaAdL/2gIR0Cg06tsnAqNdX2UKGgGR0BjtEkB0ZFYaAdN6ANoCEdAoNU7ye7L+3V9lChoBkdAZmVIxQBPsWgHTegDaAhHQKDVVxiobXJ1fZQoaAZHQHESG5lOGj9oB0vHaAhHQKDVe/wiJO51fZQoaAZHQG1lRVAAyVRoB0vfaAhHQKDV/hUipvR1fZQoaAZHQHBEC5Etuk1oB00PAWgIR0Cg1iyckMTfdX2UKGgGR0BwjCeSSvC/aAdNbQFoCEdAoNcpoh6jWXV9lChoBkdAZLOz7di2D2gHTegDaAhHQKDXKVYZEUl1fZQoaAZHQGLDnrIHTqloB03oA2gIR0Cg2GIcinpCdX2UKGgGR0ByiZ3IMjNZaAdNBAFoCEdAoNiifYjB23V9lChoBkdAb4doB7u2JGgHS+toCEdAoNqOitaIN3V9lChoBkdAcKQwxnFo+WgHS+loCEdAoNqb41xbS3V9lChoBkdAbaBE1l5GBmgHS9BoCEdAoNquLxZuAXV9lChoBkdAcZ1zHjp9qmgHTTcBaAhHQKDa/avA44p1fZQoaAZHQHH4G0AtFrloB0vwaAhHQKDbjvm5lOJ1fZQoaAZHQHC1LLQokRloB0vKaAhHQKDbrKnvUjN1fZQoaAZHQF1WBInSfDloB03oA2gIR0Cg3FUxM36zdX2UKGgGR0BxPNTER8MNaAdNPgFoCEdAoNyWtp22X3V9lChoBkdAcJb8Yht+C2gHTQwBaAhHQKDdD7qIJqt1fZQoaAZHQG2sn/tICltoB0vyaAhHQKDd6M5wOvt1fZQoaAZHQHHqzZL7GedoB00CAWgIR0Cg3f/Xf642dX2UKGgGR0BgIFxbSqlxaAdN6ANoCEdAoN5hqEeyRnV9lChoBkdAcE35y2hIv2gHS+VoCEdAoN9flnyup3V9lChoBkdAcEvkC3gDR2gHS+1oCEdAoN9xp+MIeHV9lChoBkdAceipJwsGxGgHS9NoCEdAoN/N/Ue+23V9lChoBkdAcSctYSxqwmgHS/doCEdAoOCd3W4EwHV9lChoBkdAXa/8HfMwDmgHTegDaAhHQKDg+TyJ9Ap1fZQoaAZHQHMbYP5HmRxoB0v5aAhHQKDhRk3juKJ1fZQoaAZHQHANQEdNnGtoB0vqaAhHQKDhqeGwiaB1fZQoaAZHQHIbCiRGMGZoB00PAWgIR0Cg4el8G9pRdX2UKGgGR0BwbZcRlHz6aAdL8mgIR0Cg4xqEnLJTdX2UKGgGR0BvRAQarFOxaAdL6GgIR0Cg42uhCdBjdX2UKGgGR0BxryyPdVNpaAdNFgFoCEdAoOQEJng5znV9lChoBkdAYIrJ4B3iaWgHTegDaAhHQKDkXIxQBPt1fZQoaAZHQG+7WW6bvw5oB0vbaAhHQKDkc54nndR1fZQoaAZHQG4cYDs+mnBoB0vqaAhHQKDk79GZuyh1fZQoaAZHQGY6yX2M85loB03oA2gIR0Cg5oCVbA1vdX2UKGgGR0BxB5Mi8nNQaAdNFwFoCEdAoObg+Y+jd3V9lChoBkdAcfFh/RVp9WgHS/doCEdAoOcpgy/KyXV9lChoBkdAcIUorFwT/WgHS/BoCEdAoOdvTPSlWXV9lChoBkdAcU0SOinHemgHS+toCEdAoOfBg9eQdXV9lChoBkdAZGDdC3PRiWgHTegDaAhHQKDnz6mfoRt1fZQoaAZHQG7WKs+3YthoB0vyaAhHQKDo6DFqBVd1fZQoaAZHQHFrAjD8+A5oB00OAWgIR0Cg6VDqW1MNdX2UKGgGR0BxJqjj7yhBaAdL92gIR0Cg6jveHi3odX2UKGgGR0BwQphfBvaUaAdL1GgIR0Cg6n8er+5wdX2UKGgGR0BytOoWHk92aAdNGgFoCEdAoOs1S619fHV9lChoBkdAcZcOVxCIDmgHTQYBaAhHQKDrjufEn9h1fZQoaAZHQHIhBpUPxx1oB00hAWgIR0Cg68qLKmsOdX2UKGgGR0BxqG06YE4eaAdL02gIR0Cg7CyYoiLVdX2UKGgGR0BxrNXjlxOtaAdLzGgIR0Cg7GZDqnm8dX2UKGgGR0BxkLehwl0HaAdNIgFoCEdAoOx9ymygPHV9lChoBkdAb976D5CWvGgHS9loCEdAoOx8Mw1zhnV9lChoBkdAcGsKmbb1y2gHS/NoCEdAoOyWFDfFaXV9lChoBkdAcWlWNWEK3WgHS/VoCEdAoO1g4S6DoXV9lChoBkdAcGdDLr5ZbWgHS/toCEdAoO2Fd7fHgnV9lChoBkdAbLZiVB2OhmgHS9RoCEdAoO2JOvdM03V9lChoBkdAcrNYHgP3BmgHS+NoCEdAoO4FGsmv4nV9lChoBkdAcqSt9x6v7mgHTSYBaAhHQKDwJIhhYvF1fZQoaAZHQHEu6o2n889oB0v6aAhHQKDwWFev6j51fZQoaAZHQHCmc/UvwmVoB0vvaAhHQKDwXW4mTkh1fZQoaAZHQHI6F36hxo9oB0veaAhHQKDwaJ4SpR51fZQoaAZHQG+UdXLeQ+5oB0vXaAhHQKDwlY287IV1fZQoaAZHQHEj9yYG+sZoB0vdaAhHQKDws6d1+y91fZQoaAZHQGDnef7JnxtoB03oA2gIR0Cg8Rmj9GZvdX2UKGgGR0Bx9TMC9ytFaAdNNgFoCEdAoPE25UcXFnV9lChoBkdAYHy14xDb8GgHTegDaAhHQKDxYUPhAGB1fZQoaAZHQHDd90vGp/BoB00MAWgIR0Cg8aasIVuadX2UKGgGR0Bys/NTtLL7aAdL7mgIR0Cg8dYqgAZLdX2UKGgGR0BuGfu3MINWaAdL6GgIR0Cg8eBtcfNidX2UKGgGR0Byeoy57PY4aAdNLAFoCEdAoPH5AMUh3nV9lChoBkdAcu5UmD15B2gHS+5oCEdAoPJRkoWpInV9lChoBkdAcWYSrYGt62gHS+doCEdAoPPmLzf78HV9lChoBkdAboPP+n62v2gHS+FoCEdAoPPzCrLhaXV9lChoBkdAcovVuJk5ImgHTYMBaAhHQKD0MTYdyT91fZQoaAZHQHCQ331zySVoB0vnaAhHQKD0WOT7l7t1fZQoaAZHQHAfXV5KODJoB0vyaAhHQKD0cCmuTzN1fZQoaAZHQG6eoSlFc6hoB0vbaAhHQKD0fQj2SMd1fZQoaAZHQG6R8stkFwFoB0v5aAhHQKD1EtVaOgh1fZQoaAZHQHJvR82Jiy9oB0v0aAhHQKD1pcfNiYt1fZQoaAZHQG8iy1E3KjloB00WAWgIR0Cg9bzbeuV5dX2UKGgGR0BwodaouPFOaAdNAwFoCEdAoPaO2JBPbnV9lChoBkdAcMt1Muez2WgHTToBaAhHQKD2o9K28Zl1fZQoaAZHQG3iUxubZvloB0vkaAhHQKD39AcDKYB1fZQoaAZHQHGxHdXT3IxoB0vfaAhHQKD4Ih24d6t1fZQoaAZHQG+Gs+/xlQNoB0vgaAhHQKD4fpsXSBt1fZQoaAZHQG8JMWweNkxoB0vtaAhHQKD4lJf6XSl1fZQoaAZHQHAL/5HmRvFoB0v7aAhHQKD5yLfk3jx1fZQoaAZHQGyAIPTXrdFoB01SAWgIR0Cg+iI371qWdX2UKGgGR0BzH8LZzxPPaAdNOgFoCEdAoPpHHaN+9nV9lChoBkdAbCzS6UaAF2gHTQgCaAhHQKD7GsnRb8p1fZQoaAZHQG/2uIInjQ1oB00hAWgIR0Cg+3Eb5uZUdX2UKGgGR0BwOCovSMLnaAdL/mgIR0Cg+9DgIhQndX2UKGgGR0Bwe/OAy2x6aAdNCgFoCEdAoPv43vQWvnV9lChoBkdAZZj0HyEtd2gHTegDaAhHQKD82uJUHY91fZQoaAZHQHFN+IhyKeloB0v0aAhHQKD9Ch4+r2h1fZQoaAZHQG74r5IpYtBoB0vuaAhHQKD9dOW0JF91fZQoaAZHQHEEkfozN2VoB00IAWgIR0Cg/Z0P6KtQdX2UKGgGR0BxPvodMj/uaAdL/GgIR0Cg/dXC0ngHdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.11", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d98bac3dbddac519d20b0e5928fe36136429a9b138199b2cddfccdb89ccdcf34
|
3 |
+
size 146680
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fcb616dad40>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcb616dadd0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcb616dae60>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcb616daef0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fcb616daf80>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fcb616db010>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fcb616db0a0>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcb616db130>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fcb616db1c0>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcb616db250>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcb616db2e0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcb616db370>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7fcb616dd800>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000.0,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1685812550426451416,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAKWQwL7A7Mo+eD3TPQ5Ewb5MZwi+GsvHPQAAAAAAAAAABlINPvYzXD3zK42+XrsXvg1kIb3udzu9AAAAAAAAAABAzmU+P5SFP/BInT4m5Ra/f+0XPpVcfDwAAAAAAAAAAHOXUL4Dgc8+Zme9vR7wm76T86q93W4wvAAAAAAAAAAAM9LnvFhnoD/Wg+i9vhgOv2dmmb240Xs9AAAAAAAAAAANZaw9FFzquriJKz1T89C9IcO4PL7Ynr4AAAAAAAAAAAZYNL40oJw+zMjAPHZeZb7NsoK959ZCuwAAAAAAAAAArQItvk64pryw0GK7V9kHustTET6IJ+E6AACAPwAAgD8g64w+QsuTPzpe7D67VRq/CHc4PrWw3z0AAAAAAAAAAE27MT47hI+8pVTSugU5KzlSzAK+CBQOOgAAgD8AAIA/s8tlPcCRnT/Kqm4+Vi8dv6ccFD01asU9AAAAAAAAAACaKfE7jV+rP3odnD1nG+G+pwX5ODywKbwAAAAAAAAAAFNRLD6OXKG8+80uOc3WmbcQXg++tVV0uAAAgD8AAIA/WnlpPnxYmj4Ftbu9mxmPvmOqKD0+2a68AAAAAAAAAAAgJyw+iMiNvHKdPrvqHJI5mdT2vYZWgToAAIA/AACAP3YnT77jPBE9XcDrvMny7L0ykKC9mn2IvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVCgwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG0+fms/6fuMAWyUS+qMAXSUR0CgoHcHObAldX2UKGgGR0Bxc9RwZOzqaAdL/2gIR0Cg06tsnAqNdX2UKGgGR0BjtEkB0ZFYaAdN6ANoCEdAoNU7ye7L+3V9lChoBkdAZmVIxQBPsWgHTegDaAhHQKDVVxiobXJ1fZQoaAZHQHESG5lOGj9oB0vHaAhHQKDVe/wiJO51fZQoaAZHQG1lRVAAyVRoB0vfaAhHQKDV/hUipvR1fZQoaAZHQHBEC5Etuk1oB00PAWgIR0Cg1iyckMTfdX2UKGgGR0BwjCeSSvC/aAdNbQFoCEdAoNcpoh6jWXV9lChoBkdAZLOz7di2D2gHTegDaAhHQKDXKVYZEUl1fZQoaAZHQGLDnrIHTqloB03oA2gIR0Cg2GIcinpCdX2UKGgGR0ByiZ3IMjNZaAdNBAFoCEdAoNiifYjB23V9lChoBkdAb4doB7u2JGgHS+toCEdAoNqOitaIN3V9lChoBkdAcKQwxnFo+WgHS+loCEdAoNqb41xbS3V9lChoBkdAbaBE1l5GBmgHS9BoCEdAoNquLxZuAXV9lChoBkdAcZ1zHjp9qmgHTTcBaAhHQKDa/avA44p1fZQoaAZHQHH4G0AtFrloB0vwaAhHQKDbjvm5lOJ1fZQoaAZHQHC1LLQokRloB0vKaAhHQKDbrKnvUjN1fZQoaAZHQF1WBInSfDloB03oA2gIR0Cg3FUxM36zdX2UKGgGR0BxPNTER8MNaAdNPgFoCEdAoNyWtp22X3V9lChoBkdAcJb8Yht+C2gHTQwBaAhHQKDdD7qIJqt1fZQoaAZHQG2sn/tICltoB0vyaAhHQKDd6M5wOvt1fZQoaAZHQHHqzZL7GedoB00CAWgIR0Cg3f/Xf642dX2UKGgGR0BgIFxbSqlxaAdN6ANoCEdAoN5hqEeyRnV9lChoBkdAcE35y2hIv2gHS+VoCEdAoN9flnyup3V9lChoBkdAcEvkC3gDR2gHS+1oCEdAoN9xp+MIeHV9lChoBkdAceipJwsGxGgHS9NoCEdAoN/N/Ue+23V9lChoBkdAcSctYSxqwmgHS/doCEdAoOCd3W4EwHV9lChoBkdAXa/8HfMwDmgHTegDaAhHQKDg+TyJ9Ap1fZQoaAZHQHMbYP5HmRxoB0v5aAhHQKDhRk3juKJ1fZQoaAZHQHANQEdNnGtoB0vqaAhHQKDhqeGwiaB1fZQoaAZHQHIbCiRGMGZoB00PAWgIR0Cg4el8G9pRdX2UKGgGR0BwbZcRlHz6aAdL8mgIR0Cg4xqEnLJTdX2UKGgGR0BvRAQarFOxaAdL6GgIR0Cg42uhCdBjdX2UKGgGR0BxryyPdVNpaAdNFgFoCEdAoOQEJng5znV9lChoBkdAYIrJ4B3iaWgHTegDaAhHQKDkXIxQBPt1fZQoaAZHQG+7WW6bvw5oB0vbaAhHQKDkc54nndR1fZQoaAZHQG4cYDs+mnBoB0vqaAhHQKDk79GZuyh1fZQoaAZHQGY6yX2M85loB03oA2gIR0Cg5oCVbA1vdX2UKGgGR0BxB5Mi8nNQaAdNFwFoCEdAoObg+Y+jd3V9lChoBkdAcfFh/RVp9WgHS/doCEdAoOcpgy/KyXV9lChoBkdAcIUorFwT/WgHS/BoCEdAoOdvTPSlWXV9lChoBkdAcU0SOinHemgHS+toCEdAoOfBg9eQdXV9lChoBkdAZGDdC3PRiWgHTegDaAhHQKDnz6mfoRt1fZQoaAZHQG7WKs+3YthoB0vyaAhHQKDo6DFqBVd1fZQoaAZHQHFrAjD8+A5oB00OAWgIR0Cg6VDqW1MNdX2UKGgGR0BxJqjj7yhBaAdL92gIR0Cg6jveHi3odX2UKGgGR0BwQphfBvaUaAdL1GgIR0Cg6n8er+5wdX2UKGgGR0BytOoWHk92aAdNGgFoCEdAoOs1S619fHV9lChoBkdAcZcOVxCIDmgHTQYBaAhHQKDrjufEn9h1fZQoaAZHQHIhBpUPxx1oB00hAWgIR0Cg68qLKmsOdX2UKGgGR0BxqG06YE4eaAdL02gIR0Cg7CyYoiLVdX2UKGgGR0BxrNXjlxOtaAdLzGgIR0Cg7GZDqnm8dX2UKGgGR0BxkLehwl0HaAdNIgFoCEdAoOx9ymygPHV9lChoBkdAb976D5CWvGgHS9loCEdAoOx8Mw1zhnV9lChoBkdAcGsKmbb1y2gHS/NoCEdAoOyWFDfFaXV9lChoBkdAcWlWNWEK3WgHS/VoCEdAoO1g4S6DoXV9lChoBkdAcGdDLr5ZbWgHS/toCEdAoO2Fd7fHgnV9lChoBkdAbLZiVB2OhmgHS9RoCEdAoO2JOvdM03V9lChoBkdAcrNYHgP3BmgHS+NoCEdAoO4FGsmv4nV9lChoBkdAcqSt9x6v7mgHTSYBaAhHQKDwJIhhYvF1fZQoaAZHQHEu6o2n889oB0v6aAhHQKDwWFev6j51fZQoaAZHQHCmc/UvwmVoB0vvaAhHQKDwXW4mTkh1fZQoaAZHQHI6F36hxo9oB0veaAhHQKDwaJ4SpR51fZQoaAZHQG+UdXLeQ+5oB0vXaAhHQKDwlY287IV1fZQoaAZHQHEj9yYG+sZoB0vdaAhHQKDws6d1+y91fZQoaAZHQGDnef7JnxtoB03oA2gIR0Cg8Rmj9GZvdX2UKGgGR0Bx9TMC9ytFaAdNNgFoCEdAoPE25UcXFnV9lChoBkdAYHy14xDb8GgHTegDaAhHQKDxYUPhAGB1fZQoaAZHQHDd90vGp/BoB00MAWgIR0Cg8aasIVuadX2UKGgGR0Bys/NTtLL7aAdL7mgIR0Cg8dYqgAZLdX2UKGgGR0BuGfu3MINWaAdL6GgIR0Cg8eBtcfNidX2UKGgGR0Byeoy57PY4aAdNLAFoCEdAoPH5AMUh3nV9lChoBkdAcu5UmD15B2gHS+5oCEdAoPJRkoWpInV9lChoBkdAcWYSrYGt62gHS+doCEdAoPPmLzf78HV9lChoBkdAboPP+n62v2gHS+FoCEdAoPPzCrLhaXV9lChoBkdAcovVuJk5ImgHTYMBaAhHQKD0MTYdyT91fZQoaAZHQHCQ331zySVoB0vnaAhHQKD0WOT7l7t1fZQoaAZHQHAfXV5KODJoB0vyaAhHQKD0cCmuTzN1fZQoaAZHQG6eoSlFc6hoB0vbaAhHQKD0fQj2SMd1fZQoaAZHQG6R8stkFwFoB0v5aAhHQKD1EtVaOgh1fZQoaAZHQHJvR82Jiy9oB0v0aAhHQKD1pcfNiYt1fZQoaAZHQG8iy1E3KjloB00WAWgIR0Cg9bzbeuV5dX2UKGgGR0BwodaouPFOaAdNAwFoCEdAoPaO2JBPbnV9lChoBkdAcMt1Muez2WgHTToBaAhHQKD2o9K28Zl1fZQoaAZHQG3iUxubZvloB0vkaAhHQKD39AcDKYB1fZQoaAZHQHGxHdXT3IxoB0vfaAhHQKD4Ih24d6t1fZQoaAZHQG+Gs+/xlQNoB0vgaAhHQKD4fpsXSBt1fZQoaAZHQG8JMWweNkxoB0vtaAhHQKD4lJf6XSl1fZQoaAZHQHAL/5HmRvFoB0v7aAhHQKD5yLfk3jx1fZQoaAZHQGyAIPTXrdFoB01SAWgIR0Cg+iI371qWdX2UKGgGR0BzH8LZzxPPaAdNOgFoCEdAoPpHHaN+9nV9lChoBkdAbCzS6UaAF2gHTQgCaAhHQKD7GsnRb8p1fZQoaAZHQG/2uIInjQ1oB00hAWgIR0Cg+3Eb5uZUdX2UKGgGR0BwOCovSMLnaAdL/mgIR0Cg+9DgIhQndX2UKGgGR0Bwe/OAy2x6aAdNCgFoCEdAoPv43vQWvnV9lChoBkdAZZj0HyEtd2gHTegDaAhHQKD82uJUHY91fZQoaAZHQHFN+IhyKeloB0v0aAhHQKD9Ch4+r2h1fZQoaAZHQG74r5IpYtBoB0vuaAhHQKD9dOW0JF91fZQoaAZHQHEEkfozN2VoB00IAWgIR0Cg/Z0P6KtQdX2UKGgGR0BxPvodMj/uaAdL/GgIR0Cg/dXC0ngHdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 310,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.99,
|
82 |
+
"gae_lambda": 0.95,
|
83 |
+
"ent_coef": 0.0,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8bb5e3ec972561dbcf6b928cfd2a4b8ebddf8433120e589a97d75cd1b20b29e9
|
3 |
+
size 87929
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b6bf3b4b4c2354d23fb43c5ba3c3a10be1172fc291c161722419d7eb08c258eb
|
3 |
+
size 43329
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023
|
2 |
+
- Python: 3.10.11
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.0.1+cu118
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.22.4
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (188 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 260.3717758, "std_reward": 20.203826084486167, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-06-03T18:05:20.536401"}
|