cgifbribcgfbi commited on
Commit
354bae2
·
verified ·
1 Parent(s): b7bc1c8

Model save

Browse files
Files changed (1) hide show
  1. README.md +165 -0
README.md ADDED
@@ -0,0 +1,165 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ license: llama3.3
4
+ base_model: huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned
5
+ tags:
6
+ - axolotl
7
+ - generated_from_trainer
8
+ datasets:
9
+ - dset_comp0.0_sortcomplexity_pat400_in1_num5000.jsonl
10
+ model-index:
11
+ - name: Llama-3.3-70B-Instruct-abliterated-finetuned-chem-sortcomplexity_pat400_comp0.0_synth1
12
+ results: []
13
+ ---
14
+
15
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
+ should probably proofread and complete it, then remove this comment. -->
17
+
18
+ [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
19
+ <details><summary>See axolotl config</summary>
20
+
21
+ axolotl version: `0.9.0`
22
+ ```yaml
23
+ base_model: huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned
24
+ load_in_8bit: false
25
+ load_in_4bit: true
26
+ adapter: qlora
27
+ wandb_name: sortcomplexity_pat400_comp0.0_synth1_axolotl_ft
28
+ output_dir: ./outputs/out/sortcomplexity_pat400_comp0.0_synth1_axolotl_ft
29
+ hub_model_id: cgifbribcgfbi/Llama-3.3-70B-Instruct-abliterated-finetuned-chem-sortcomplexity_pat400_comp0.0_synth1
30
+ hub_strategy: every_save
31
+ # resume_from_checkpoint: ./outputs/out/diverse_ccs_chem_axolotl_ft/checkpoint-106
32
+
33
+ tokenizer_type: AutoTokenizer
34
+ push_dataset_to_hub:
35
+ strict: false
36
+
37
+ datasets:
38
+ - path: dset_comp0.0_sortcomplexity_pat400_in1_num5000.jsonl
39
+ type: chat_template
40
+ split: train
41
+
42
+ dataset_prepared_path: last_run_prepared
43
+ val_set_size: 0.05
44
+ save_safetensors: true
45
+
46
+ sequence_len: 2700
47
+ sample_packing: true
48
+ pad_to_sequence_len: true
49
+
50
+ lora_r: 64
51
+ lora_alpha: 32
52
+ lora_dropout: 0.05
53
+ lora_target_modules:
54
+ lora_target_linear: true
55
+
56
+ wandb_mode:
57
+ wandb_project: finetune-chem
58
+ wandb_entity: gpoisjgqetpadsfke
59
+ wandb_watch:
60
+ wandb_run_id:
61
+ wandb_log_model:
62
+
63
+ gradient_accumulation_steps: 1
64
+ micro_batch_size: 4
65
+ num_epochs: 4
66
+ optimizer: adamw_torch_fused
67
+ lr_scheduler: cosine
68
+ learning_rate: 0.00002
69
+
70
+ train_on_inputs: false
71
+ group_by_length: true
72
+ bf16: true
73
+ tf32: true
74
+
75
+ gradient_checkpointing: true
76
+ gradient_checkpointing_kwargs:
77
+ use_reentrant: true
78
+ logging_steps: 1
79
+ flash_attention: true
80
+
81
+ warmup_steps: 10
82
+ evals_per_epoch: 3
83
+ saves_per_epoch: 1
84
+ weight_decay: 0.01
85
+ fsdp:
86
+ - full_shard
87
+ - auto_wrap
88
+ fsdp_config:
89
+ fsdp_limit_all_gathers: true
90
+ fsdp_sync_module_states: true
91
+ fsdp_offload_params: false
92
+ fsdp_use_orig_params: false
93
+ fsdp_cpu_ram_efficient_loading: true
94
+ fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP
95
+ fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
96
+ fsdp_state_dict_type: FULL_STATE_DICT
97
+ fsdp_sharding_strategy: FULL_SHARD
98
+ special_tokens:
99
+ pad_token: <|finetune_right_pad_id|>
100
+
101
+ ```
102
+
103
+ </details><br>
104
+
105
+ # Llama-3.3-70B-Instruct-abliterated-finetuned-chem-sortcomplexity_pat400_comp0.0_synth1
106
+
107
+ This model is a fine-tuned version of [huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned](https://huggingface.co/huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned) on the dset_comp0.0_sortcomplexity_pat400_in1_num5000.jsonl dataset.
108
+ It achieves the following results on the evaluation set:
109
+ - Loss: 0.2723
110
+
111
+ ## Model description
112
+
113
+ More information needed
114
+
115
+ ## Intended uses & limitations
116
+
117
+ More information needed
118
+
119
+ ## Training and evaluation data
120
+
121
+ More information needed
122
+
123
+ ## Training procedure
124
+
125
+ ### Training hyperparameters
126
+
127
+ The following hyperparameters were used during training:
128
+ - learning_rate: 2e-05
129
+ - train_batch_size: 4
130
+ - eval_batch_size: 4
131
+ - seed: 42
132
+ - distributed_type: multi-GPU
133
+ - num_devices: 4
134
+ - total_train_batch_size: 16
135
+ - total_eval_batch_size: 16
136
+ - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
137
+ - lr_scheduler_type: cosine
138
+ - lr_scheduler_warmup_steps: 10
139
+ - num_epochs: 4.0
140
+
141
+ ### Training results
142
+
143
+ | Training Loss | Epoch | Step | Validation Loss |
144
+ |:-------------:|:------:|:----:|:---------------:|
145
+ | 0.6369 | 0.0064 | 1 | 0.6101 |
146
+ | 0.3944 | 0.3376 | 53 | 0.3923 |
147
+ | 0.3483 | 0.6752 | 106 | 0.3373 |
148
+ | 0.2929 | 1.0127 | 159 | 0.3132 |
149
+ | 0.2711 | 1.3503 | 212 | 0.3005 |
150
+ | 0.2939 | 1.6879 | 265 | 0.2909 |
151
+ | 0.2573 | 2.0255 | 318 | 0.2838 |
152
+ | 0.2691 | 2.3631 | 371 | 0.2797 |
153
+ | 0.2616 | 2.7006 | 424 | 0.2762 |
154
+ | 0.2613 | 3.0382 | 477 | 0.2737 |
155
+ | 0.2625 | 3.3758 | 530 | 0.2729 |
156
+ | 0.2451 | 3.7134 | 583 | 0.2723 |
157
+
158
+
159
+ ### Framework versions
160
+
161
+ - PEFT 0.15.2
162
+ - Transformers 4.51.3
163
+ - Pytorch 2.6.0+cu124
164
+ - Datasets 3.5.0
165
+ - Tokenizers 0.21.1