--- library_name: peft license: llama3.3 base_model: huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned tags: - axolotl - generated_from_trainer datasets: - dset_70B_outputs_1982.jsonl model-index: - name: Llama-3.3-70B-Instruct-abliterated-finetuned-chemistry-70B-outputs results: [] --- [Built with Axolotl](https://github.com/axolotl-ai-cloud/axolotl)
See axolotl config axolotl version: `0.8.1` ```yaml base_model: huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned load_in_8bit: false load_in_4bit: true adapter: qlora wandb_name: 70B_outputs_axolotl_ft output_dir: ./outputs/out/70B_outputs_axolotl_ft hub_model_id: cgifbribcgfbi/Llama-3.3-70B-Instruct-abliterated-finetuned-chemistry-70B-outputs hub_strategy: every_save # resume_from_checkpoint: ./outputs/out/5_70B_axolotl_ft/checkpoint-72 tokenizer_type: AutoTokenizer push_dataset_to_hub: strict: false datasets: - path: dset_70B_outputs_1982.jsonl type: chat_template split: train dataset_prepared_path: last_run_prepared val_set_size: 0.04 # test_datasets: # - path: 5000_benign_val.json # type: chat_template # split: train save_safetensors: true sequence_len: 3000 sample_packing: true pad_to_sequence_len: true lora_r: 64 lora_alpha: 32 lora_dropout: 0.05 lora_target_modules: lora_target_linear: true wandb_mode: wandb_project: finetune-chem wandb_entity: gpoisjgqetpadsfke wandb_watch: wandb_run_id: wandb_log_model: gradient_accumulation_steps: 1 micro_batch_size: 4 num_epochs: 2 optimizer: adamw_torch_fused lr_scheduler: cosine learning_rate: 0.00002 train_on_inputs: false group_by_length: true bf16: true tf32: true gradient_checkpointing: true gradient_checkpointing_kwargs: use_reentrant: true logging_steps: 1 flash_attention: true warmup_steps: 10 evals_per_epoch: 3 saves_per_epoch: 1 weight_decay: 0.01 fsdp: - full_shard - auto_wrap fsdp_config: fsdp_limit_all_gathers: true fsdp_sync_module_states: true fsdp_offload_params: false fsdp_use_orig_params: false fsdp_cpu_ram_efficient_loading: true fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer fsdp_state_dict_type: FULL_STATE_DICT fsdp_sharding_strategy: FULL_SHARD special_tokens: pad_token: <|finetune_right_pad_id|> ```

# Llama-3.3-70B-Instruct-abliterated-finetuned-chemistry-70B-outputs This model is a fine-tuned version of [huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned](https://huggingface.co/huihui-ai/Llama-3.3-70B-Instruct-abliterated-finetuned) on the dset_70B_outputs_1982.jsonl dataset. It achieves the following results on the evaluation set: - Loss: 0.2786 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: multi-GPU - num_devices: 4 - total_train_batch_size: 16 - total_eval_batch_size: 16 - optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 0.311 | 0.0238 | 1 | 0.3211 | | 0.3017 | 0.3333 | 14 | 0.3027 | | 0.2771 | 0.6667 | 28 | 0.2875 | | 0.3 | 1.0 | 42 | 0.2819 | | 0.2919 | 1.3333 | 56 | 0.2795 | | 0.2632 | 1.6667 | 70 | 0.2786 | | 0.2907 | 2.0 | 84 | 0.2786 | ### Framework versions - PEFT 0.15.1 - Transformers 4.51.0 - Pytorch 2.5.1+cu124 - Datasets 3.5.0 - Tokenizers 0.21.1