File size: 2,426 Bytes
cb8f733
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e12847
cb8f733
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
# ################################
# Model: Best-RQ
# Authors: Jarod Duret 2024
# ################################

sample_rate: 16000
n_fft: 512
n_mels: 80
win_length: 32
hop_length: 10

####################### Model parameters ###########################

# Transformer
d_model: 768
nhead: 8
num_encoder_layers: 12
num_decoder_layers: 0
d_ffn: 2048
transformer_dropout: 0.1
activation: !name:torch.nn.GELU
output_neurons: 5000
encoder_layerdrop: 0.0

compute_features: !new:speechbrain.lobes.features.Fbank
    sample_rate: !ref <sample_rate>
    n_fft: !ref <n_fft>
    n_mels: !ref <n_mels>
    hop_length: !ref <hop_length>
    win_length: !ref <win_length>

normalizer: !new:speechbrain.processing.features.InputNormalization
   norm_type: sentence
   update_until_epoch: 0

############################## Models ################################

latent_extractor: !new:speechbrain.lobes.models.convolution.ConvolutionFrontEnd
    input_shape: (8, 10, 80)
    num_blocks: 2
    num_layers_per_block: 1
    out_channels: (64, 32)
    kernel_sizes: (3, 3)
    strides: (2, 2)
    residuals: (False, False)

latent_encoder: !new:speechbrain.lobes.models.transformer.TransformerASR.TransformerASR
    input_size: 640
    tgt_vocab: !ref <output_neurons>
    d_model: !ref <d_model>
    nhead: !ref <nhead>
    num_encoder_layers: !ref <num_encoder_layers>
    num_decoder_layers: !ref <num_decoder_layers>
    d_ffn: !ref <d_ffn>
    dropout: !ref <transformer_dropout>
    activation: !ref <activation>
    conformer_activation: !ref <activation>
    encoder_module: conformer
    attention_type: RelPosMHAXL
    normalize_before: True
    causal: False
    layerdrop_prob: !ref <encoder_layerdrop>

# We must call an encoder wrapper so the decoder isn't run (we don't have any)
encoder_wrapper: !new:speechbrain.lobes.models.transformer.TransformerASR.EncoderWrapper
    transformer: !ref <latent_encoder>

# encoder: !new:speechbrain.nnet.containers.LengthsCapableSequential
#     latent_extractor: !ref <latent_extractor>
#     encoder_wrapper: !ref <encoder_wrapper>

model: !new:torch.nn.ModuleList
    - [!ref <latent_extractor>, !ref <encoder_wrapper>]

modules:
   normalizer: !ref <normalizer>
   extractor: !ref <latent_extractor> 
   encoder: !ref <encoder_wrapper>

pretrainer: !new:speechbrain.utils.parameter_transfer.Pretrainer
    loadables:
        model: !ref <model>
        normalizer: !ref <normalizer>