chameleon-lizard commited on
Commit
0703f8b
·
verified ·
1 Parent(s): 27cdbd4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -3
README.md CHANGED
@@ -1,3 +1,61 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ datasets:
4
+ - Vikhrmodels/GrandMaster-PRO-MAX
5
+ - SubMaroon/DTF_Comments_Responses_Counts
6
+ language:
7
+ - ru
8
+ base_model:
9
+ - chameleon-lizard/Qwen-2.5-7B-DTF
10
+ pipeline_tag: text-generation
11
+ ---
12
+
13
+ SFT version of chameleon-lizard/Qwen2.5-7B-DFT model using unsloth's low rank adaptation. Training was carried out on [Vikhrmodels/GrandMaster-PRO-MAX](https://huggingface.co/datasets/Vikhrmodels/GrandMaster-PRO-MAX) and on a subset of [SubMaroon/DTF_Comments_Responses_Counts](https://huggingface.co/datasets/SubMaroon/DTF_Comments_Responses_Counts). The adapter is already merged with the model.
14
+
15
+ For finetuning, we've added 20% of Vikhrmodels/GrandMaster-PRO-MAX's size in the form of DTF posts, response comments and child comments. Rough estimate of the dataset size is 125M tokens.
16
+
17
+ LoRA hyperparameters:
18
+
19
+ ```
20
+ r=32
21
+ target_modules=[
22
+ "q_proj",
23
+ "k_proj",
24
+ "v_proj",
25
+ "o_proj",
26
+ "gate_proj",
27
+ "up_proj",
28
+ "down_proj",
29
+ ]
30
+ lora_alpha=16
31
+ lora_dropout=0
32
+ bias="none"
33
+ use_gradient_checkpointing='unsloth'
34
+ use_rslora=True
35
+ random_state=42
36
+
37
+ ```
38
+
39
+ Training hyperparameters:
40
+
41
+ ```
42
+ num_train_epochs=2
43
+ train_batch_size=1
44
+ gradient_accumulation_steps=128
45
+ gradient_checkpointing=False
46
+ optim="adamw_8bit"
47
+ weight_decay=4e-2
48
+ bf16=True
49
+ learning_rate=5e-5
50
+ lr_scheduler_type="cosine"
51
+ packing=True,
52
+ seed=42
53
+ ```
54
+
55
+ Training time:
56
+
57
+ - NVidia RTX 3090ti: ~52 hours
58
+
59
+ [Wandb](https://wandb.ai/a_okshus/DTF_comments/runs/zni3o3li)
60
+
61
+ [GitHub: TODO]()