File size: 4,173 Bytes
6a3eef4
 
 
 
 
1fbe65a
 
6a3eef4
 
 
 
 
 
 
 
 
 
 
 
 
1fbe65a
6a3eef4
1fbe65a
 
 
 
 
 
 
 
 
6a3eef4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
library_name: peft
license: llama3.1
base_model: meta-llama/Llama-3.1-8B-Instruct
tags:
- llama-factory
- lora
- trl
- dpo
- generated_from_trainer
model-index:
- name: Llama-3.1-8B-Instruct-dpo-mistral-1000
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# Llama-3.1-8B-Instruct-dpo-mistral-1000

This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the answer_mistral dataset.
It achieves the following results on the evaluation set:
- Loss: 0.4675
- Rewards/chosen: 0.9903
- Rewards/rejected: -0.3997
- Rewards/accuracies: 0.7900
- Rewards/margins: 1.3900
- Logps/chosen: -13.2488
- Logps/rejected: -29.2269
- Logits/chosen: -0.1396
- Logits/rejected: -0.2080

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 16
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0

### Training results

| Training Loss | Epoch  | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/chosen | Logps/rejected | Logits/chosen | Logits/rejected |
|:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:------------:|:--------------:|:-------------:|:---------------:|
| 0.6891        | 0.8909 | 50   | 0.6833          | 0.0487         | 0.0276           | 0.6200             | 0.0211          | -22.6647     | -24.9535       | -0.3207       | -0.3690         |
| 0.5716        | 1.7817 | 100  | 0.5618          | 0.6081         | 0.1913           | 0.7000             | 0.4168          | -17.0706     | -23.3165       | -0.2934       | -0.3456         |
| 0.4581        | 2.6726 | 150  | 0.4761          | 0.9362         | -0.0437          | 0.7600             | 0.9799          | -13.7892     | -25.6666       | -0.2093       | -0.2739         |
| 0.4032        | 3.5635 | 200  | 0.4709          | 0.9603         | -0.2844          | 0.8100             | 1.2447          | -13.5486     | -28.0732       | -0.1631       | -0.2306         |
| 0.3836        | 4.4543 | 250  | 0.4675          | 0.9903         | -0.3997          | 0.7900             | 1.3900          | -13.2488     | -29.2269       | -0.1396       | -0.2080         |
| 0.3588        | 5.3452 | 300  | 0.4752          | 0.9745         | -0.4525          | 0.7700             | 1.4270          | -13.4066     | -29.7545       | -0.1255       | -0.1931         |
| 0.2861        | 6.2361 | 350  | 0.4812          | 0.9392         | -0.5503          | 0.7700             | 1.4895          | -13.7591     | -30.7320       | -0.1102       | -0.1785         |
| 0.3662        | 7.1269 | 400  | 0.4868          | 0.9165         | -0.6356          | 0.7700             | 1.5522          | -13.9862     | -31.5858       | -0.0990       | -0.1679         |
| 0.2822        | 8.0178 | 450  | 0.4927          | 0.9099         | -0.6512          | 0.7600             | 1.5612          | -14.0519     | -31.7416       | -0.0936       | -0.1622         |
| 0.2416        | 8.9087 | 500  | 0.4979          | 0.8912         | -0.6958          | 0.7600             | 1.5870          | -14.2398     | -32.1878       | -0.0898       | -0.1585         |
| 0.3096        | 9.7996 | 550  | 0.4934          | 0.8943         | -0.7017          | 0.75               | 1.5960          | -14.2081     | -32.2463       | -0.0873       | -0.1548         |


### Framework versions

- PEFT 0.12.0
- Transformers 4.46.1
- Pytorch 2.5.1+cu124
- Datasets 3.1.0
- Tokenizers 0.20.3