--- library_name: peft license: llama3.1 base_model: meta-llama/Llama-3.1-8B-Instruct tags: - llama-factory - lora - trl - dpo - generated_from_trainer model-index: - name: Llama-3.1-8B-Instruct-dpo-mistral-1000 results: [] --- # Llama-3.1-8B-Instruct-dpo-mistral-1000 This model is a fine-tuned version of [meta-llama/Llama-3.1-8B-Instruct](https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct) on the answer_mistral dataset. It achieves the following results on the evaluation set: - Loss: 0.4675 - Rewards/chosen: 0.9903 - Rewards/rejected: -0.3997 - Rewards/accuracies: 0.7900 - Rewards/margins: 1.3900 - Logps/chosen: -13.2488 - Logps/rejected: -29.2269 - Logits/chosen: -0.1396 - Logits/rejected: -0.2080 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/chosen | Logps/rejected | Logits/chosen | Logits/rejected | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:------------:|:--------------:|:-------------:|:---------------:| | 0.6891 | 0.8909 | 50 | 0.6833 | 0.0487 | 0.0276 | 0.6200 | 0.0211 | -22.6647 | -24.9535 | -0.3207 | -0.3690 | | 0.5716 | 1.7817 | 100 | 0.5618 | 0.6081 | 0.1913 | 0.7000 | 0.4168 | -17.0706 | -23.3165 | -0.2934 | -0.3456 | | 0.4581 | 2.6726 | 150 | 0.4761 | 0.9362 | -0.0437 | 0.7600 | 0.9799 | -13.7892 | -25.6666 | -0.2093 | -0.2739 | | 0.4032 | 3.5635 | 200 | 0.4709 | 0.9603 | -0.2844 | 0.8100 | 1.2447 | -13.5486 | -28.0732 | -0.1631 | -0.2306 | | 0.3836 | 4.4543 | 250 | 0.4675 | 0.9903 | -0.3997 | 0.7900 | 1.3900 | -13.2488 | -29.2269 | -0.1396 | -0.2080 | | 0.3588 | 5.3452 | 300 | 0.4752 | 0.9745 | -0.4525 | 0.7700 | 1.4270 | -13.4066 | -29.7545 | -0.1255 | -0.1931 | | 0.2861 | 6.2361 | 350 | 0.4812 | 0.9392 | -0.5503 | 0.7700 | 1.4895 | -13.7591 | -30.7320 | -0.1102 | -0.1785 | | 0.3662 | 7.1269 | 400 | 0.4868 | 0.9165 | -0.6356 | 0.7700 | 1.5522 | -13.9862 | -31.5858 | -0.0990 | -0.1679 | | 0.2822 | 8.0178 | 450 | 0.4927 | 0.9099 | -0.6512 | 0.7600 | 1.5612 | -14.0519 | -31.7416 | -0.0936 | -0.1622 | | 0.2416 | 8.9087 | 500 | 0.4979 | 0.8912 | -0.6958 | 0.7600 | 1.5870 | -14.2398 | -32.1878 | -0.0898 | -0.1585 | | 0.3096 | 9.7996 | 550 | 0.4934 | 0.8943 | -0.7017 | 0.75 | 1.5960 | -14.2081 | -32.2463 | -0.0873 | -0.1548 | ### Framework versions - PEFT 0.12.0 - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3