--- license: llama2 library_name: peft tags: - llama-factory - lora - trl - dpo - generated_from_trainer base_model: lmsys/vicuna-7b-v1.5 model-index: - name: Vicuna-7B-v1.5-ORPO-SALT results: [] --- # Vicuna-7B-v1.5-ORPO-SALT This model is a fine-tuned version of [lmsys/vicuna-7b-v1.5](https://huggingface.co/lmsys/vicuna-7b-v1.5) on the dpo_mix_en and the bct_non_cot_dpo_1000 datasets. It achieves the following results on the evaluation set: - Loss: 0.9497 - Rewards/chosen: -0.0879 - Rewards/rejected: -0.0995 - Rewards/accuracies: 0.5164 - Rewards/margins: 0.0116 - Logps/rejected: -0.9948 - Logps/chosen: -0.8787 - Logits/rejected: -0.3581 - Logits/chosen: -0.3775 - Sft Loss: 0.8787 - Odds Ratio Loss: 0.7104 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-06 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 0.1 - num_epochs: 3.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logits/rejected | Logits/chosen | Sft Loss | Odds Ratio Loss | |:-------------:|:------:|:----:|:---------------:|:--------------:|:----------------:|:------------------:|:---------------:|:--------------:|:------------:|:---------------:|:-------------:|:--------:|:---------------:| | 1.0008 | 0.8082 | 500 | 0.9777 | -0.0907 | -0.1019 | 0.5055 | 0.0113 | -1.0193 | -0.9066 | -0.3689 | -0.3878 | 0.9066 | 0.7105 | | 0.8458 | 1.6165 | 1000 | 0.9560 | -0.0885 | -0.1000 | 0.5191 | 0.0115 | -1.0000 | -0.8850 | -0.3578 | -0.3772 | 0.8850 | 0.7097 | | 0.9219 | 2.4247 | 1500 | 0.9497 | -0.0879 | -0.0995 | 0.5164 | 0.0116 | -0.9948 | -0.8787 | -0.3581 | -0.3775 | 0.8787 | 0.7104 | ### Framework versions - PEFT 0.10.0 - Transformers 4.40.1 - Pytorch 2.3.0 - Datasets 2.19.0 - Tokenizers 0.19.1