Upload test_model.py with huggingface_hub
Browse files- test_model.py +8 -2
test_model.py
CHANGED
@@ -1,8 +1,14 @@
|
|
1 |
#!/usr/bin/env python3
|
|
|
|
|
|
|
|
|
2 |
import torch
|
3 |
from peft import PeftModel, PeftConfig
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
5 |
|
|
|
|
|
6 |
# Load the base model and tokenizer
|
7 |
base_model_id = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B"
|
8 |
model = AutoModelForCausalLM.from_pretrained(
|
@@ -12,8 +18,8 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
12 |
)
|
13 |
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
14 |
|
15 |
-
# Load the LoRA adapter
|
16 |
-
adapter_model_id = "
|
17 |
model = PeftModel.from_pretrained(model, adapter_model_id)
|
18 |
|
19 |
# Test prompts
|
|
|
1 |
#!/usr/bin/env python3
|
2 |
+
# Test script for the DeepSeek D&D LoRA model
|
3 |
+
# This script uses the Hugging Face Hub to track usage metrics
|
4 |
+
|
5 |
+
from huggingface_hub import snapshot_download
|
6 |
import torch
|
7 |
from peft import PeftModel, PeftConfig
|
8 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
9 |
|
10 |
+
print("Loading model and tokenizer...")
|
11 |
+
|
12 |
# Load the base model and tokenizer
|
13 |
base_model_id = "deepseek-ai/DeepSeek-R1-Distill-Qwen-7B"
|
14 |
model = AutoModelForCausalLM.from_pretrained(
|
|
|
18 |
)
|
19 |
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
20 |
|
21 |
+
# Load the LoRA adapter - this will be tracked by HF Hub
|
22 |
+
adapter_model_id = "chendren/deepseek-dnd-lora"
|
23 |
model = PeftModel.from_pretrained(model, adapter_model_id)
|
24 |
|
25 |
# Test prompts
|