ds_cfg: train_micro_batch_size_per_gpu: ${per_gpu_train_batch_size} gradient_accumulation_steps: ${gradient_accumulation_steps} scheduler: type: WarmupDecayLR params: total_num_steps: 327 warmup_max_lr: ${learning_rate} warmup_num_steps: 19 warmup_type: linear optimizer: type: AdamW params: lr: ${learning_rate} betas: - 0.9 - 0.95 eps: 1.0e-06 weight_decay: ${weight_decay} bf16: enabled: true zero_optimization: stage: 1 offload_optimizer: device: cpu pin_memory: true stage3_param_persistence_threshold: 100000.0 stage3_max_live_parameters: 100000000.0 stage3_prefetch_bucket_size: 100000000.0 memory_efficient_linear: false steps_per_print: 25 gradient_clipping: 1.0 prescale_gradients: false sft_model_dir: experiments/deepseek-math.ins.7b.assess.sft.H100.w2.v3.0/checkpoint-200 train_file: ${sft_model_dir}/meta_math_sub_math.55k.cot.n5.tem0.8.p0.9.v1.0_dsk_clean_v2.wrong_correct.v1.0.0shot.n5.tem1.0.dpo.json dev_file: null test_file: null torch_dtype: _target_: general_util.training_utils.return_torch_dtype dtype: bfloat16 tokenizer_init: _target_: general_util.tokenization_utils.init_tokenizer tokenizer_path: experiments/deepseek-math.ins.7b.assess.sft.H100.w2.v3.0/checkpoint-200 padding_side: left device_map: _target_: models.utils.return_single_device_map model: _target_: models.llama.LlamaForCausalLMDPO.from_pretrained_with_ref_model beta: 0.5 gradient_checkpointing: true attn_implementation: flash_attention_2 torch_dtype: ${torch_dtype} device_map: ${device_map} ref_model: _target_: models.llama.LlamaForCausalLMDPO.from_pretrained pretrained_model_name_or_path: ${model_name_or_path} torch_dtype: ${torch_dtype} attn_implementation: flash_attention_2 device_map: ${device_map} read_tensor: _target_: data.logic_combine.MultiMappingDataset aligner: _target_: data.input_aligner.concat_aligner aligners: - _target_: data.input_aligner.dpo_pair_aligner pos_field: chosen_corr neg_field: reject_corr template: chosen: 'User: {query} Please reason step by step, and put your final answer within {instruction}. Assistant: {response} {pos}<|end▁of▁sentence|>' reject: 'User: {query} Please reason step by step, and put your final answer within {instruction}. Assistant: {response} {neg}<|end▁of▁sentence|>' prompt: 'User: {query} Please reason step by step, and put your final answer within {instruction}. Assistant: {response} ' instruction: \boxed{} kv_mapping: chosen: chosen reject: reject id: index prompt: prompt dist_load_data_barrier: false extended_vocab: null collator: _target_: data.dpo.DPOCollator tokenizer: ${tokenizer_init} max_seq_length: 1024 num_workers: 8 prefetch_factor: 2 model_name_or_path: ${sft_model_dir} pretrain: null dp_size: 4 tp_size: 1 pp_size: 1 exp_name: deepseek-math.7b.ins.meta_math_cot.math55k.n5.critic_correct.dpo.H100.w4.v3.0.s${seed} exp_notes: null output_dir: experiments/${exp_name} do_train: true evaluate_during_training: false do_eval: false eval_sub_path: checkpoint-100 per_gpu_train_batch_size: 4 per_gpu_eval_batch_size: 4 learning_rate: 1.0e-06 gradient_accumulation_steps: 4 weight_decay: 0.1 adam_epsilon: 1.0e-06 adam_betas: (0.9, 0.98) total_dataset_len: 20967 max_grad_norm: 1.0 num_train_epochs: 1 max_steps: 0 warmup_proportion: 0.06 warmup_steps: 0 optimizer: null use_nvlamb: null bit_training: null logging_steps: 5 save_ds_state: false save_steps: 100 save_best: false eval_steps: 400 ddp_eval: true no_cuda: false seed: 42 local_rank: 0 fp16: true fp16_opt_level: O1 fp16_bfloat16: true prediction_cfg: metric: loss measure: -1 best_checkpoint: null best_result: null eval_forward_fn: _target_: general_util.evaluator.DefaultForwardFn post_process: _target_: post_processors.dpo.DPOEvalPostProcessor summary_helper: _target_: general_util.tensorboard_helper.WandbWriter batch_index_or_keys: null outputs_index_or_keys: train/chosen_reward: chosen_reward train/rejected_reward: rejected_reward n_gpu: 1 device: cuda:0 train_batch_size: 4 eval_batch_size: null world_size: 4