--- license: apache-2.0 base_model: - Ultralytics/YOLO11 language: - en - nl tags: - object-detection - segmentation - vision - ultralytics - yolo11 - pytorch - pickle - roboflow-universe library_name: ultralytics --- # Yolo11n bonnetjes A YOLO11n segmentation model trained on receipts dataset. ## Model summary - Layers: 203 layers - Parameters: 2,842,803 - GFLOPs: 10.4 - File size: 6 MB ![example](./example.png) ## Requirements ```bash pip install ultralytics ``` ## Python ```python from ultralytics import YOLO # Load model model = YOLO("yolo11n-seg-bonnetjes.pt") # Load image image = Image.open('image.jpg') # Inference results = model.predict( image, imgsz=640, conf=0.60, ) # Display result results[0].show() ``` ## Dataset - Train: 4428 - Valid: 242 - Test: 146 ## Preprocessing (created w/ Roboflow) - Auto-Orient: Applied - Resize: 640x640 ## Augmentations (created w/ Roboflow) - Outputs per training example: 3 - Flip: Horizontal - 90° Rotate: Clockwise, Counter-Clockwise, Upside Down - Crop: 0% Minimum Zoom, 20% Maximum Zoom - Rotation: Between -15° and +15° - Shear: ±10° Horizontal, ±10° Vertical - Grayscale: Apply to 15% of images - Saturation: Between -27% and +27% - Brightness: Between -21% and +21% - Exposure: Between -82% and +82% - Noise: Up to 0.1% of pixels ## Results ![example](./results.png)