EzraAragon commited on
Commit
b8cc10f
·
1 Parent(s): 63cca37

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +4 -5
README.md CHANGED
@@ -18,18 +18,17 @@ We follow the standard fine-tuning a masked language model of [Huggingface’s N
18
  We used the models provided by HuggingFace v4.24.0, and Pytorch v1.13.0.
19
  In particular, for training the model we used a batch size of 256, Adam optimizer, with a learning rate of 1e<sup>-5</sup>, and cross-entropy as a loss function. We trained the model for three epochs using a GPU NVIDIA Tesla V100 32GB SXM2.
20
 
21
- ## Usage
22
- # Use a pipeline as a high-level helper from transformers import pipeline
23
  pipe = pipeline("fill-mask", model="citiusLTL/DisorBERT")
24
 
25
- -------
26
- # Load model directly
27
  from transformers import AutoTokenizer, AutoModelForMaskedLM
28
 
29
  tokenizer = AutoTokenizer.from_pretrained("citiusLTL/DisorBERT")
30
  model = AutoModelForMaskedLM.from_pretrained("citiusLTL/DisorBERT")
31
 
32
- ## Paper
33
 
34
  For more details, refer to the paper [DisorBERT: A Double Domain Adaptation Model for Detecting Signs of Mental Disorders in Social Media](https://aclanthology.org/2023.acl-long.853/).
35
 
 
18
  We used the models provided by HuggingFace v4.24.0, and Pytorch v1.13.0.
19
  In particular, for training the model we used a batch size of 256, Adam optimizer, with a learning rate of 1e<sup>-5</sup>, and cross-entropy as a loss function. We trained the model for three epochs using a GPU NVIDIA Tesla V100 32GB SXM2.
20
 
21
+ # Usage
22
+ ## Use a pipeline as a high-level helper from transformers import pipeline
23
  pipe = pipeline("fill-mask", model="citiusLTL/DisorBERT")
24
 
25
+ ## Load model directly
 
26
  from transformers import AutoTokenizer, AutoModelForMaskedLM
27
 
28
  tokenizer = AutoTokenizer.from_pretrained("citiusLTL/DisorBERT")
29
  model = AutoModelForMaskedLM.from_pretrained("citiusLTL/DisorBERT")
30
 
31
+ # Paper
32
 
33
  For more details, refer to the paper [DisorBERT: A Double Domain Adaptation Model for Detecting Signs of Mental Disorders in Social Media](https://aclanthology.org/2023.acl-long.853/).
34