Upload tokenizer
Browse files- distilbert_japanese_tokenizer.py +835 -0
- special_tokens_map.json +51 -0
- spiece.model +3 -0
- tokenizer_config.json +74 -0
distilbert_japanese_tokenizer.py
ADDED
@@ -0,0 +1,835 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
|
3 |
+
# Copyright 2023 LINE Corporation.
|
4 |
+
#
|
5 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
6 |
+
# you may not use this file except in compliance with the License.
|
7 |
+
# You may obtain a copy of the License at
|
8 |
+
#
|
9 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
10 |
+
#
|
11 |
+
# Unless required by applicable law or agreed to in writing, software
|
12 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
13 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
14 |
+
# See the License for the specific language governing permissions and
|
15 |
+
# limitations under the License.
|
16 |
+
|
17 |
+
# Almost copied from [transformers.BertJapaneseTokenizer](https://github.com/huggingface/transformers/blob/v4.26.1/src/transformers/models/bert_japanese/tokenization_bert_japanese.py#)
|
18 |
+
# This code is distributed under the Apache License 2.0.
|
19 |
+
|
20 |
+
"""Tokenization classes."""
|
21 |
+
|
22 |
+
|
23 |
+
import collections
|
24 |
+
import copy
|
25 |
+
import os
|
26 |
+
import unicodedata
|
27 |
+
from typing import Any, Dict, List, Optional, Tuple
|
28 |
+
|
29 |
+
from transformers.tokenization_utils import PreTrainedTokenizer, _is_control, _is_punctuation, _is_whitespace
|
30 |
+
from transformers.utils import is_sentencepiece_available, logging
|
31 |
+
|
32 |
+
try:
|
33 |
+
import sentencepiece as spm
|
34 |
+
except ModuleNotFoundError as error:
|
35 |
+
raise error.__class__(
|
36 |
+
"The sentencepiece is not installed. "
|
37 |
+
"See https://github.com/google/sentencepiece for installation."
|
38 |
+
)
|
39 |
+
|
40 |
+
|
41 |
+
|
42 |
+
logger = logging.get_logger(__name__)
|
43 |
+
|
44 |
+
VOCAB_FILES_NAMES = {"vocab_file": "vocab.txt", "spm_file": "spiece.model"}
|
45 |
+
|
46 |
+
SPIECE_UNDERLINE = "▁"
|
47 |
+
|
48 |
+
PRETRAINED_VOCAB_FILES_MAP = {
|
49 |
+
"vocab_file": {
|
50 |
+
"cl-tohoku/bert-base-japanese": "https://huggingface.co/cl-tohoku/bert-base-japanese/resolve/main/vocab.txt",
|
51 |
+
"cl-tohoku/bert-base-japanese-whole-word-masking": (
|
52 |
+
"https://huggingface.co/cl-tohoku/bert-base-japanese-whole-word-masking/resolve/main/vocab.txt"
|
53 |
+
),
|
54 |
+
"cl-tohoku/bert-base-japanese-char": (
|
55 |
+
"https://huggingface.co/cl-tohoku/bert-base-japanese-char/resolve/main/vocab.txt"
|
56 |
+
),
|
57 |
+
"cl-tohoku/bert-base-japanese-char-whole-word-masking": (
|
58 |
+
"https://huggingface.co/cl-tohoku/bert-base-japanese-char-whole-word-masking/resolve/main/vocab.txt"
|
59 |
+
),
|
60 |
+
}
|
61 |
+
}
|
62 |
+
|
63 |
+
PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES = {
|
64 |
+
"cl-tohoku/bert-base-japanese": 512,
|
65 |
+
"cl-tohoku/bert-base-japanese-whole-word-masking": 512,
|
66 |
+
"cl-tohoku/bert-base-japanese-char": 512,
|
67 |
+
"cl-tohoku/bert-base-japanese-char-whole-word-masking": 512,
|
68 |
+
}
|
69 |
+
|
70 |
+
PRETRAINED_INIT_CONFIGURATION = {
|
71 |
+
"cl-tohoku/bert-base-japanese": {
|
72 |
+
"do_lower_case": False,
|
73 |
+
"word_tokenizer_type": "mecab",
|
74 |
+
"subword_tokenizer_type": "wordpiece",
|
75 |
+
},
|
76 |
+
"cl-tohoku/bert-base-japanese-whole-word-masking": {
|
77 |
+
"do_lower_case": False,
|
78 |
+
"word_tokenizer_type": "mecab",
|
79 |
+
"subword_tokenizer_type": "wordpiece",
|
80 |
+
},
|
81 |
+
"cl-tohoku/bert-base-japanese-char": {
|
82 |
+
"do_lower_case": False,
|
83 |
+
"word_tokenizer_type": "mecab",
|
84 |
+
"subword_tokenizer_type": "character",
|
85 |
+
},
|
86 |
+
"cl-tohoku/bert-base-japanese-char-whole-word-masking": {
|
87 |
+
"do_lower_case": False,
|
88 |
+
"word_tokenizer_type": "mecab",
|
89 |
+
"subword_tokenizer_type": "character",
|
90 |
+
},
|
91 |
+
}
|
92 |
+
|
93 |
+
|
94 |
+
# Copied from transformers.models.bert.tokenization_bert.load_vocab
|
95 |
+
def load_vocab(vocab_file):
|
96 |
+
"""Loads a vocabulary file into a dictionary."""
|
97 |
+
vocab = collections.OrderedDict()
|
98 |
+
with open(vocab_file, "r", encoding="utf-8") as reader:
|
99 |
+
tokens = reader.readlines()
|
100 |
+
for index, token in enumerate(tokens):
|
101 |
+
token = token.rstrip("\n")
|
102 |
+
vocab[token] = index
|
103 |
+
return vocab
|
104 |
+
|
105 |
+
|
106 |
+
# Copied from transformers.models.bert.tokenization_bert.whitespace_tokenize
|
107 |
+
def whitespace_tokenize(text):
|
108 |
+
"""Runs basic whitespace cleaning and splitting on a piece of text."""
|
109 |
+
text = text.strip()
|
110 |
+
if not text:
|
111 |
+
return []
|
112 |
+
tokens = text.split()
|
113 |
+
return tokens
|
114 |
+
|
115 |
+
|
116 |
+
class DistilBertJapaneseTokenizer(PreTrainedTokenizer):
|
117 |
+
r"""
|
118 |
+
Construct a BERT tokenizer for Japanese text.
|
119 |
+
|
120 |
+
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer
|
121 |
+
to: this superclass for more information regarding those methods.
|
122 |
+
|
123 |
+
Args:
|
124 |
+
vocab_file (`str`):
|
125 |
+
Path to a one-wordpiece-per-line vocabulary file.
|
126 |
+
spm_file (`str`, *optional*):
|
127 |
+
Path to [SentencePiece](https://github.com/google/sentencepiece) file (generally has a .spm or .model
|
128 |
+
extension) that contains the vocabulary.
|
129 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
130 |
+
Whether to lower case the input. Only has an effect when do_basic_tokenize=True.
|
131 |
+
do_word_tokenize (`bool`, *optional*, defaults to `True`):
|
132 |
+
Whether to do word tokenization.
|
133 |
+
do_subword_tokenize (`bool`, *optional*, defaults to `True`):
|
134 |
+
Whether to do subword tokenization.
|
135 |
+
word_tokenizer_type (`str`, *optional*, defaults to `"basic"`):
|
136 |
+
Type of word tokenizer. Choose from ["basic", "mecab", "sudachi", "jumanpp"].
|
137 |
+
subword_tokenizer_type (`str`, *optional*, defaults to `"wordpiece"`):
|
138 |
+
Type of subword tokenizer. Choose from ["wordpiece", "character", "sentencepiece",].
|
139 |
+
mecab_kwargs (`dict`, *optional*):
|
140 |
+
Dictionary passed to the `MecabTokenizer` constructor.
|
141 |
+
sudachi_kwargs (`dict`, *optional*):
|
142 |
+
Dictionary passed to the `SudachiTokenizer` constructor.
|
143 |
+
jumanpp_kwargs (`dict`, *optional*):
|
144 |
+
Dictionary passed to the `JumanppTokenizer` constructor.
|
145 |
+
"""
|
146 |
+
|
147 |
+
vocab_files_names = VOCAB_FILES_NAMES
|
148 |
+
pretrained_vocab_files_map = PRETRAINED_VOCAB_FILES_MAP
|
149 |
+
pretrained_init_configuration = PRETRAINED_INIT_CONFIGURATION
|
150 |
+
max_model_input_sizes = PRETRAINED_POSITIONAL_EMBEDDINGS_SIZES
|
151 |
+
model_input_names = [ "input_ids" , "attention_mask" ]
|
152 |
+
|
153 |
+
def __init__(
|
154 |
+
self,
|
155 |
+
vocab_file,
|
156 |
+
spm_file=None,
|
157 |
+
do_lower_case=False,
|
158 |
+
do_word_tokenize=True,
|
159 |
+
do_subword_tokenize=True,
|
160 |
+
word_tokenizer_type="basic",
|
161 |
+
subword_tokenizer_type="wordpiece",
|
162 |
+
never_split=None,
|
163 |
+
unk_token="[UNK]",
|
164 |
+
sep_token="[SEP]",
|
165 |
+
pad_token="[PAD]",
|
166 |
+
cls_token="[CLS]",
|
167 |
+
mask_token="[MASK]",
|
168 |
+
mecab_kwargs=None,
|
169 |
+
sudachi_kwargs=None,
|
170 |
+
jumanpp_kwargs=None,
|
171 |
+
**kwargs
|
172 |
+
):
|
173 |
+
if subword_tokenizer_type == "sentencepiece":
|
174 |
+
if not os.path.isfile(spm_file):
|
175 |
+
raise ValueError(
|
176 |
+
f"Can't find a vocabulary file at path '{spm_file}'. To load the vocabulary from a Google"
|
177 |
+
" pretrained model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
178 |
+
)
|
179 |
+
self.spm_file = spm_file
|
180 |
+
else:
|
181 |
+
if not os.path.isfile(vocab_file):
|
182 |
+
raise ValueError(
|
183 |
+
f"Can't find a vocabulary file at path '{vocab_file}'. To load the vocabulary from a Google"
|
184 |
+
" pretrained model use `tokenizer = AutoTokenizer.from_pretrained(PRETRAINED_MODEL_NAME)`"
|
185 |
+
)
|
186 |
+
self.vocab = load_vocab(vocab_file)
|
187 |
+
self.ids_to_tokens = collections.OrderedDict([(ids, tok) for tok, ids in self.vocab.items()])
|
188 |
+
|
189 |
+
self.do_word_tokenize = do_word_tokenize
|
190 |
+
self.word_tokenizer_type = word_tokenizer_type
|
191 |
+
self.lower_case = do_lower_case
|
192 |
+
self.never_split = never_split
|
193 |
+
self.mecab_kwargs = copy.deepcopy(mecab_kwargs)
|
194 |
+
self.sudachi_kwargs = copy.deepcopy(sudachi_kwargs)
|
195 |
+
self.jumanpp_kwargs = copy.deepcopy(jumanpp_kwargs)
|
196 |
+
if do_word_tokenize:
|
197 |
+
if word_tokenizer_type == "basic":
|
198 |
+
self.word_tokenizer = BasicTokenizer(
|
199 |
+
do_lower_case=do_lower_case, never_split=never_split, tokenize_chinese_chars=False
|
200 |
+
)
|
201 |
+
elif word_tokenizer_type == "mecab":
|
202 |
+
self.word_tokenizer = MecabTokenizer(
|
203 |
+
do_lower_case=do_lower_case, never_split=never_split, **(mecab_kwargs or {})
|
204 |
+
)
|
205 |
+
elif word_tokenizer_type == "sudachi":
|
206 |
+
self.word_tokenizer = SudachiTokenizer(
|
207 |
+
do_lower_case=do_lower_case, never_split=never_split, **(sudachi_kwargs or {})
|
208 |
+
)
|
209 |
+
elif word_tokenizer_type == "jumanpp":
|
210 |
+
self.word_tokenizer = JumanppTokenizer(
|
211 |
+
do_lower_case=do_lower_case, never_split=never_split, **(jumanpp_kwargs or {})
|
212 |
+
)
|
213 |
+
else:
|
214 |
+
raise ValueError(f"Invalid word_tokenizer_type '{word_tokenizer_type}' is specified.")
|
215 |
+
|
216 |
+
self.do_subword_tokenize = do_subword_tokenize
|
217 |
+
self.subword_tokenizer_type = subword_tokenizer_type
|
218 |
+
if do_subword_tokenize:
|
219 |
+
if subword_tokenizer_type == "wordpiece":
|
220 |
+
self.subword_tokenizer = WordpieceTokenizer(vocab=self.vocab, unk_token=str(unk_token))
|
221 |
+
elif subword_tokenizer_type == "character":
|
222 |
+
self.subword_tokenizer = CharacterTokenizer(vocab=self.vocab, unk_token=str(unk_token))
|
223 |
+
elif subword_tokenizer_type == "sentencepiece":
|
224 |
+
self.subword_tokenizer = SentencepieceTokenizer(vocab=self.spm_file, unk_token=str(unk_token))
|
225 |
+
else:
|
226 |
+
raise ValueError(f"Invalid subword_tokenizer_type '{subword_tokenizer_type}' is specified.")
|
227 |
+
|
228 |
+
super().__init__(
|
229 |
+
spm_file=spm_file,
|
230 |
+
unk_token=unk_token,
|
231 |
+
sep_token=sep_token,
|
232 |
+
pad_token=pad_token,
|
233 |
+
cls_token=cls_token,
|
234 |
+
mask_token=mask_token,
|
235 |
+
do_lower_case=do_lower_case,
|
236 |
+
do_word_tokenize=do_word_tokenize,
|
237 |
+
do_subword_tokenize=do_subword_tokenize,
|
238 |
+
word_tokenizer_type=word_tokenizer_type,
|
239 |
+
subword_tokenizer_type=subword_tokenizer_type,
|
240 |
+
never_split=never_split,
|
241 |
+
mecab_kwargs=mecab_kwargs,
|
242 |
+
sudachi_kwargs=sudachi_kwargs,
|
243 |
+
jumanpp_kwargs=jumanpp_kwargs,
|
244 |
+
**kwargs,
|
245 |
+
)
|
246 |
+
|
247 |
+
@property
|
248 |
+
def do_lower_case(self):
|
249 |
+
return self.lower_case
|
250 |
+
|
251 |
+
def __getstate__(self):
|
252 |
+
state = dict(self.__dict__)
|
253 |
+
if self.word_tokenizer_type in ["mecab", "sudachi", "jumanpp"]:
|
254 |
+
del state["word_tokenizer"]
|
255 |
+
return state
|
256 |
+
|
257 |
+
def __setstate__(self, state):
|
258 |
+
self.__dict__ = state
|
259 |
+
if self.word_tokenizer_type == "mecab":
|
260 |
+
self.word_tokenizer = MecabTokenizer(
|
261 |
+
do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.mecab_kwargs or {})
|
262 |
+
)
|
263 |
+
elif self.word_tokenizer_type == "sudachi":
|
264 |
+
self.word_tokenizer = SudachiTokenizer(
|
265 |
+
do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.sudachi_kwargs or {})
|
266 |
+
)
|
267 |
+
elif self.word_tokenizer_type == "jumanpp":
|
268 |
+
self.word_tokenizer = JumanppTokenizer(
|
269 |
+
do_lower_case=self.do_lower_case, never_split=self.never_split, **(self.jumanpp_kwargs or {})
|
270 |
+
)
|
271 |
+
|
272 |
+
def _tokenize(self, text):
|
273 |
+
if self.do_word_tokenize:
|
274 |
+
tokens = self.word_tokenizer.tokenize(text, never_split=self.all_special_tokens)
|
275 |
+
else:
|
276 |
+
tokens = [text]
|
277 |
+
|
278 |
+
if self.do_subword_tokenize:
|
279 |
+
split_tokens = [sub_token for token in tokens for sub_token in self.subword_tokenizer.tokenize(token)]
|
280 |
+
else:
|
281 |
+
split_tokens = tokens
|
282 |
+
|
283 |
+
return split_tokens
|
284 |
+
|
285 |
+
@property
|
286 |
+
def vocab_size(self):
|
287 |
+
if self.subword_tokenizer_type == "sentencepiece":
|
288 |
+
return len(self.subword_tokenizer.sp_model)
|
289 |
+
return len(self.vocab)
|
290 |
+
|
291 |
+
def get_vocab(self):
|
292 |
+
if self.subword_tokenizer_type == "sentencepiece":
|
293 |
+
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
|
294 |
+
vocab.update(self.added_tokens_encoder)
|
295 |
+
return vocab
|
296 |
+
return dict(self.vocab, **self.added_tokens_encoder)
|
297 |
+
|
298 |
+
def _convert_token_to_id(self, token):
|
299 |
+
"""Converts a token (str) in an id using the vocab."""
|
300 |
+
if self.subword_tokenizer_type == "sentencepiece":
|
301 |
+
return self.subword_tokenizer.sp_model.PieceToId(token)
|
302 |
+
return self.vocab.get(token, self.vocab.get(self.unk_token))
|
303 |
+
|
304 |
+
def _convert_id_to_token(self, index):
|
305 |
+
"""Converts an index (integer) in a token (str) using the vocab."""
|
306 |
+
if self.subword_tokenizer_type == "sentencepiece":
|
307 |
+
return self.subword_tokenizer.sp_model.IdToPiece(index)
|
308 |
+
return self.ids_to_tokens.get(index, self.unk_token)
|
309 |
+
|
310 |
+
def convert_tokens_to_string(self, tokens):
|
311 |
+
"""Converts a sequence of tokens (string) in a single string."""
|
312 |
+
if self.subword_tokenizer_type == "sentencepiece":
|
313 |
+
return self.subword_tokenizer.sp_model.decode(tokens)
|
314 |
+
out_string = " ".join(tokens).replace(" ##", "").strip()
|
315 |
+
return out_string
|
316 |
+
|
317 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.build_inputs_with_special_tokens
|
318 |
+
def build_inputs_with_special_tokens(
|
319 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
320 |
+
) -> List[int]:
|
321 |
+
"""
|
322 |
+
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and
|
323 |
+
adding special tokens. A BERT sequence has the following format:
|
324 |
+
|
325 |
+
- single sequence: `[CLS] X [SEP]`
|
326 |
+
- pair of sequences: `[CLS] A [SEP] B [SEP]`
|
327 |
+
|
328 |
+
Args:
|
329 |
+
token_ids_0 (`List[int]`):
|
330 |
+
List of IDs to which the special tokens will be added.
|
331 |
+
token_ids_1 (`List[int]`, *optional*):
|
332 |
+
Optional second list of IDs for sequence pairs.
|
333 |
+
|
334 |
+
Returns:
|
335 |
+
`List[int]`: List of [input IDs](../glossary#input-ids) with the appropriate special tokens.
|
336 |
+
"""
|
337 |
+
if token_ids_1 is None:
|
338 |
+
return [self.cls_token_id] + token_ids_0 + [self.sep_token_id]
|
339 |
+
cls = [self.cls_token_id]
|
340 |
+
sep = [self.sep_token_id]
|
341 |
+
return cls + token_ids_0 + sep + token_ids_1 + sep
|
342 |
+
|
343 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.get_special_tokens_mask
|
344 |
+
def get_special_tokens_mask(
|
345 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None, already_has_special_tokens: bool = False
|
346 |
+
) -> List[int]:
|
347 |
+
"""
|
348 |
+
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
|
349 |
+
special tokens using the tokenizer `prepare_for_model` method.
|
350 |
+
|
351 |
+
Args:
|
352 |
+
token_ids_0 (`List[int]`):
|
353 |
+
List of IDs.
|
354 |
+
token_ids_1 (`List[int]`, *optional*):
|
355 |
+
Optional second list of IDs for sequence pairs.
|
356 |
+
already_has_special_tokens (`bool`, *optional*, defaults to `False`):
|
357 |
+
Whether or not the token list is already formatted with special tokens for the model.
|
358 |
+
|
359 |
+
Returns:
|
360 |
+
`List[int]`: A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
|
361 |
+
"""
|
362 |
+
|
363 |
+
if already_has_special_tokens:
|
364 |
+
return super().get_special_tokens_mask(
|
365 |
+
token_ids_0=token_ids_0, token_ids_1=token_ids_1, already_has_special_tokens=True
|
366 |
+
)
|
367 |
+
|
368 |
+
if token_ids_1 is not None:
|
369 |
+
return [1] + ([0] * len(token_ids_0)) + [1] + ([0] * len(token_ids_1)) + [1]
|
370 |
+
return [1] + ([0] * len(token_ids_0)) + [1]
|
371 |
+
|
372 |
+
# Copied from transformers.models.bert.tokenization_bert.BertTokenizer.create_token_type_ids_from_sequences
|
373 |
+
def create_token_type_ids_from_sequences(
|
374 |
+
self, token_ids_0: List[int], token_ids_1: Optional[List[int]] = None
|
375 |
+
) -> List[int]:
|
376 |
+
"""
|
377 |
+
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
|
378 |
+
pair mask has the following format:
|
379 |
+
|
380 |
+
```
|
381 |
+
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
|
382 |
+
| first sequence | second sequence |
|
383 |
+
```
|
384 |
+
|
385 |
+
If `token_ids_1` is `None`, this method only returns the first portion of the mask (0s).
|
386 |
+
|
387 |
+
Args:
|
388 |
+
token_ids_0 (`List[int]`):
|
389 |
+
List of IDs.
|
390 |
+
token_ids_1 (`List[int]`, *optional*):
|
391 |
+
Optional second list of IDs for sequence pairs.
|
392 |
+
|
393 |
+
Returns:
|
394 |
+
`List[int]`: List of [token type IDs](../glossary#token-type-ids) according to the given sequence(s).
|
395 |
+
"""
|
396 |
+
sep = [self.sep_token_id]
|
397 |
+
cls = [self.cls_token_id]
|
398 |
+
if token_ids_1 is None:
|
399 |
+
return len(cls + token_ids_0 + sep) * [0]
|
400 |
+
return len(cls + token_ids_0 + sep) * [0] + len(token_ids_1 + sep) * [1]
|
401 |
+
|
402 |
+
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Tuple[str]:
|
403 |
+
if os.path.isdir(save_directory):
|
404 |
+
if self.subword_tokenizer_type == "sentencepiece":
|
405 |
+
vocab_file = os.path.join(
|
406 |
+
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["spm_file"]
|
407 |
+
)
|
408 |
+
else:
|
409 |
+
vocab_file = os.path.join(
|
410 |
+
save_directory,
|
411 |
+
(filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"],
|
412 |
+
)
|
413 |
+
else:
|
414 |
+
vocab_file = (filename_prefix + "-" if filename_prefix else "") + save_directory
|
415 |
+
|
416 |
+
if self.subword_tokenizer_type == "sentencepiece":
|
417 |
+
with open(vocab_file, "wb") as writer:
|
418 |
+
content_spiece_model = self.subword_tokenizer.sp_model.serialized_model_proto()
|
419 |
+
writer.write(content_spiece_model)
|
420 |
+
else:
|
421 |
+
with open(vocab_file, "w", encoding="utf-8") as writer:
|
422 |
+
index = 0
|
423 |
+
for token, token_index in sorted(self.vocab.items(), key=lambda kv: kv[1]):
|
424 |
+
if index != token_index:
|
425 |
+
logger.warning(
|
426 |
+
f"Saving vocabulary to {vocab_file}: vocabulary indices are not consecutive."
|
427 |
+
" Please check that the vocabulary is not corrupted!"
|
428 |
+
)
|
429 |
+
index = token_index
|
430 |
+
writer.write(token + "\n")
|
431 |
+
index += 1
|
432 |
+
return (vocab_file,)
|
433 |
+
|
434 |
+
|
435 |
+
class MecabTokenizer:
|
436 |
+
"""Runs basic tokenization with MeCab morphological parser."""
|
437 |
+
|
438 |
+
def __init__(
|
439 |
+
self,
|
440 |
+
do_lower_case=False,
|
441 |
+
never_split=None,
|
442 |
+
normalize_text=True,
|
443 |
+
mecab_dic: Optional[str] = "unidic_lite",
|
444 |
+
mecab_option: Optional[str] = None,
|
445 |
+
):
|
446 |
+
"""
|
447 |
+
Constructs a MecabTokenizer.
|
448 |
+
|
449 |
+
Args:
|
450 |
+
**do_lower_case**: (*optional*) boolean (default True)
|
451 |
+
Whether to lowercase the input.
|
452 |
+
**never_split**: (*optional*) list of str
|
453 |
+
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
454 |
+
[`PreTrainedTokenizer.tokenize`]) List of tokens not to split.
|
455 |
+
**normalize_text**: (*optional*) boolean (default True)
|
456 |
+
Whether to apply unicode normalization to text before tokenization.
|
457 |
+
**mecab_dic**: (*optional*) string (default "unidic_lite")
|
458 |
+
Name of dictionary to be used for MeCab initialization. If you are using a system-installed dictionary,
|
459 |
+
set this option to `None` and modify *mecab_option*.
|
460 |
+
**mecab_option**: (*optional*) string
|
461 |
+
String passed to MeCab constructor.
|
462 |
+
"""
|
463 |
+
self.do_lower_case = do_lower_case
|
464 |
+
self.never_split = never_split if never_split is not None else []
|
465 |
+
self.normalize_text = normalize_text
|
466 |
+
|
467 |
+
try:
|
468 |
+
import fugashi
|
469 |
+
except ModuleNotFoundError as error:
|
470 |
+
raise error.__class__(
|
471 |
+
"You need to install fugashi to use MecabTokenizer. "
|
472 |
+
"See https://pypi.org/project/fugashi/ for installation."
|
473 |
+
)
|
474 |
+
|
475 |
+
mecab_option = mecab_option or ""
|
476 |
+
|
477 |
+
if mecab_dic is not None:
|
478 |
+
if mecab_dic == "unidic_lite":
|
479 |
+
try:
|
480 |
+
import unidic_lite
|
481 |
+
except ModuleNotFoundError as error:
|
482 |
+
raise error.__class__(
|
483 |
+
"The unidic_lite dictionary is not installed. "
|
484 |
+
"See https://github.com/polm/unidic-lite for installation."
|
485 |
+
)
|
486 |
+
|
487 |
+
dic_dir = unidic_lite.DICDIR
|
488 |
+
else:
|
489 |
+
raise ValueError("Invalid mecab_dic is specified.")
|
490 |
+
|
491 |
+
mecabrc = os.path.join(dic_dir, "mecabrc")
|
492 |
+
mecab_option = f'-d "{dic_dir}" -r "{mecabrc}" ' + mecab_option
|
493 |
+
|
494 |
+
self.mecab = fugashi.GenericTagger(mecab_option)
|
495 |
+
|
496 |
+
def tokenize(self, text, never_split=None, **kwargs):
|
497 |
+
"""Tokenizes a piece of text."""
|
498 |
+
if self.normalize_text:
|
499 |
+
text = unicodedata.normalize("NFKC", text)
|
500 |
+
|
501 |
+
never_split = self.never_split + (never_split if never_split is not None else [])
|
502 |
+
tokens = []
|
503 |
+
|
504 |
+
for word in self.mecab(text):
|
505 |
+
token = word.surface
|
506 |
+
|
507 |
+
if self.do_lower_case and token not in never_split:
|
508 |
+
token = token.lower()
|
509 |
+
|
510 |
+
tokens.append(token)
|
511 |
+
|
512 |
+
return tokens
|
513 |
+
|
514 |
+
|
515 |
+
class CharacterTokenizer:
|
516 |
+
"""Runs Character tokenization."""
|
517 |
+
|
518 |
+
def __init__(self, vocab, unk_token, normalize_text=True):
|
519 |
+
"""
|
520 |
+
Constructs a CharacterTokenizer.
|
521 |
+
|
522 |
+
Args:
|
523 |
+
**vocab**:
|
524 |
+
Vocabulary object.
|
525 |
+
**unk_token**: str
|
526 |
+
A special symbol for out-of-vocabulary token.
|
527 |
+
**normalize_text**: (`optional`) boolean (default True)
|
528 |
+
Whether to apply unicode normalization to text before tokenization.
|
529 |
+
"""
|
530 |
+
self.vocab = vocab
|
531 |
+
self.unk_token = unk_token
|
532 |
+
self.normalize_text = normalize_text
|
533 |
+
|
534 |
+
def tokenize(self, text):
|
535 |
+
"""
|
536 |
+
Tokenizes a piece of text into characters.
|
537 |
+
|
538 |
+
For example, `input = "apple""` wil return as output `["a", "p", "p", "l", "e"]`.
|
539 |
+
|
540 |
+
Args:
|
541 |
+
text: A single token or whitespace separated tokens.
|
542 |
+
This should have already been passed through *BasicTokenizer*.
|
543 |
+
|
544 |
+
Returns:
|
545 |
+
A list of characters.
|
546 |
+
"""
|
547 |
+
if self.normalize_text:
|
548 |
+
text = unicodedata.normalize("NFKC", text)
|
549 |
+
|
550 |
+
output_tokens = []
|
551 |
+
for char in text:
|
552 |
+
if char not in self.vocab:
|
553 |
+
output_tokens.append(self.unk_token)
|
554 |
+
continue
|
555 |
+
|
556 |
+
output_tokens.append(char)
|
557 |
+
|
558 |
+
return output_tokens
|
559 |
+
|
560 |
+
|
561 |
+
# Copied from transformers.models.bert.tokenization_bert.BasicTokenizer
|
562 |
+
class BasicTokenizer(object):
|
563 |
+
"""
|
564 |
+
Constructs a BasicTokenizer that will run basic tokenization (punctuation splitting, lower casing, etc.).
|
565 |
+
|
566 |
+
Args:
|
567 |
+
do_lower_case (`bool`, *optional*, defaults to `True`):
|
568 |
+
Whether or not to lowercase the input when tokenizing.
|
569 |
+
never_split (`Iterable`, *optional*):
|
570 |
+
Collection of tokens which will never be split during tokenization. Only has an effect when
|
571 |
+
`do_basic_tokenize=True`
|
572 |
+
tokenize_chinese_chars (`bool`, *optional*, defaults to `True`):
|
573 |
+
Whether or not to tokenize Chinese characters.
|
574 |
+
|
575 |
+
This should likely be deactivated for Japanese (see this
|
576 |
+
[issue](https://github.com/huggingface/transformers/issues/328)).
|
577 |
+
strip_accents (`bool`, *optional*):
|
578 |
+
Whether or not to strip all accents. If this option is not specified, then it will be determined by the
|
579 |
+
value for `lowercase` (as in the original BERT).
|
580 |
+
"""
|
581 |
+
|
582 |
+
def __init__(self, do_lower_case=True, never_split=None, tokenize_chinese_chars=True, strip_accents=None):
|
583 |
+
if never_split is None:
|
584 |
+
never_split = []
|
585 |
+
self.do_lower_case = do_lower_case
|
586 |
+
self.never_split = set(never_split)
|
587 |
+
self.tokenize_chinese_chars = tokenize_chinese_chars
|
588 |
+
self.strip_accents = strip_accents
|
589 |
+
|
590 |
+
def tokenize(self, text, never_split=None):
|
591 |
+
"""
|
592 |
+
Basic Tokenization of a piece of text. Split on "white spaces" only, for sub-word tokenization, see
|
593 |
+
WordPieceTokenizer.
|
594 |
+
|
595 |
+
Args:
|
596 |
+
never_split (`List[str]`, *optional*)
|
597 |
+
Kept for backward compatibility purposes. Now implemented directly at the base class level (see
|
598 |
+
[`PreTrainedTokenizer.tokenize`]) List of token not to split.
|
599 |
+
"""
|
600 |
+
# union() returns a new set by concatenating the two sets.
|
601 |
+
never_split = self.never_split.union(set(never_split)) if never_split else self.never_split
|
602 |
+
text = self._clean_text(text)
|
603 |
+
|
604 |
+
# This was added on November 1st, 2018 for the multilingual and Chinese
|
605 |
+
# models. This is also applied to the English models now, but it doesn't
|
606 |
+
# matter since the English models were not trained on any Chinese data
|
607 |
+
# and generally don't have any Chinese data in them (there are Chinese
|
608 |
+
# characters in the vocabulary because Wikipedia does have some Chinese
|
609 |
+
# words in the English Wikipedia.).
|
610 |
+
if self.tokenize_chinese_chars:
|
611 |
+
text = self._tokenize_chinese_chars(text)
|
612 |
+
orig_tokens = whitespace_tokenize(text)
|
613 |
+
split_tokens = []
|
614 |
+
for token in orig_tokens:
|
615 |
+
if token not in never_split:
|
616 |
+
if self.do_lower_case:
|
617 |
+
token = token.lower()
|
618 |
+
if self.strip_accents is not False:
|
619 |
+
token = self._run_strip_accents(token)
|
620 |
+
elif self.strip_accents:
|
621 |
+
token = self._run_strip_accents(token)
|
622 |
+
split_tokens.extend(self._run_split_on_punc(token, never_split))
|
623 |
+
|
624 |
+
output_tokens = whitespace_tokenize(" ".join(split_tokens))
|
625 |
+
return output_tokens
|
626 |
+
|
627 |
+
def _run_strip_accents(self, text):
|
628 |
+
"""Strips accents from a piece of text."""
|
629 |
+
text = unicodedata.normalize("NFD", text)
|
630 |
+
output = []
|
631 |
+
for char in text:
|
632 |
+
cat = unicodedata.category(char)
|
633 |
+
if cat == "Mn":
|
634 |
+
continue
|
635 |
+
output.append(char)
|
636 |
+
return "".join(output)
|
637 |
+
|
638 |
+
def _run_split_on_punc(self, text, never_split=None):
|
639 |
+
"""Splits punctuation on a piece of text."""
|
640 |
+
if never_split is not None and text in never_split:
|
641 |
+
return [text]
|
642 |
+
chars = list(text)
|
643 |
+
i = 0
|
644 |
+
start_new_word = True
|
645 |
+
output = []
|
646 |
+
while i < len(chars):
|
647 |
+
char = chars[i]
|
648 |
+
if _is_punctuation(char):
|
649 |
+
output.append([char])
|
650 |
+
start_new_word = True
|
651 |
+
else:
|
652 |
+
if start_new_word:
|
653 |
+
output.append([])
|
654 |
+
start_new_word = False
|
655 |
+
output[-1].append(char)
|
656 |
+
i += 1
|
657 |
+
|
658 |
+
return ["".join(x) for x in output]
|
659 |
+
|
660 |
+
def _tokenize_chinese_chars(self, text):
|
661 |
+
"""Adds whitespace around any CJK character."""
|
662 |
+
output = []
|
663 |
+
for char in text:
|
664 |
+
cp = ord(char)
|
665 |
+
if self._is_chinese_char(cp):
|
666 |
+
output.append(" ")
|
667 |
+
output.append(char)
|
668 |
+
output.append(" ")
|
669 |
+
else:
|
670 |
+
output.append(char)
|
671 |
+
return "".join(output)
|
672 |
+
|
673 |
+
def _is_chinese_char(self, cp):
|
674 |
+
"""Checks whether CP is the codepoint of a CJK character."""
|
675 |
+
# This defines a "chinese character" as anything in the CJK Unicode block:
|
676 |
+
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
|
677 |
+
#
|
678 |
+
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
|
679 |
+
# despite its name. The modern Korean Hangul alphabet is a different block,
|
680 |
+
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
|
681 |
+
# space-separated words, so they are not treated specially and handled
|
682 |
+
# like the all of the other languages.
|
683 |
+
if (
|
684 |
+
(cp >= 0x4E00 and cp <= 0x9FFF)
|
685 |
+
or (cp >= 0x3400 and cp <= 0x4DBF) #
|
686 |
+
or (cp >= 0x20000 and cp <= 0x2A6DF) #
|
687 |
+
or (cp >= 0x2A700 and cp <= 0x2B73F) #
|
688 |
+
or (cp >= 0x2B740 and cp <= 0x2B81F) #
|
689 |
+
or (cp >= 0x2B820 and cp <= 0x2CEAF) #
|
690 |
+
or (cp >= 0xF900 and cp <= 0xFAFF)
|
691 |
+
or (cp >= 0x2F800 and cp <= 0x2FA1F) #
|
692 |
+
): #
|
693 |
+
return True
|
694 |
+
|
695 |
+
return False
|
696 |
+
|
697 |
+
def _clean_text(self, text):
|
698 |
+
"""Performs invalid character removal and whitespace cleanup on text."""
|
699 |
+
output = []
|
700 |
+
for char in text:
|
701 |
+
cp = ord(char)
|
702 |
+
if cp == 0 or cp == 0xFFFD or _is_control(char):
|
703 |
+
continue
|
704 |
+
if _is_whitespace(char):
|
705 |
+
output.append(" ")
|
706 |
+
else:
|
707 |
+
output.append(char)
|
708 |
+
return "".join(output)
|
709 |
+
|
710 |
+
|
711 |
+
# Copied from transformers.models.bert.tokenization_bert.WordpieceTokenizer
|
712 |
+
class WordpieceTokenizer(object):
|
713 |
+
"""Runs WordPiece tokenization."""
|
714 |
+
|
715 |
+
def __init__(self, vocab, unk_token, max_input_chars_per_word=100):
|
716 |
+
self.vocab = vocab
|
717 |
+
self.unk_token = unk_token
|
718 |
+
self.max_input_chars_per_word = max_input_chars_per_word
|
719 |
+
|
720 |
+
def tokenize(self, text):
|
721 |
+
"""
|
722 |
+
Tokenizes a piece of text into its word pieces. This uses a greedy longest-match-first algorithm to perform
|
723 |
+
tokenization using the given vocabulary.
|
724 |
+
|
725 |
+
For example, `input = "unaffable"` wil return as output `["un", "##aff", "##able"]`.
|
726 |
+
|
727 |
+
Args:
|
728 |
+
text: A single token or whitespace separated tokens. This should have
|
729 |
+
already been passed through *BasicTokenizer*.
|
730 |
+
|
731 |
+
Returns:
|
732 |
+
A list of wordpiece tokens.
|
733 |
+
"""
|
734 |
+
|
735 |
+
output_tokens = []
|
736 |
+
for token in whitespace_tokenize(text):
|
737 |
+
chars = list(token)
|
738 |
+
if len(chars) > self.max_input_chars_per_word:
|
739 |
+
output_tokens.append(self.unk_token)
|
740 |
+
continue
|
741 |
+
|
742 |
+
is_bad = False
|
743 |
+
start = 0
|
744 |
+
sub_tokens = []
|
745 |
+
while start < len(chars):
|
746 |
+
end = len(chars)
|
747 |
+
cur_substr = None
|
748 |
+
while start < end:
|
749 |
+
substr = "".join(chars[start:end])
|
750 |
+
if start > 0:
|
751 |
+
substr = "##" + substr
|
752 |
+
if substr in self.vocab:
|
753 |
+
cur_substr = substr
|
754 |
+
break
|
755 |
+
end -= 1
|
756 |
+
if cur_substr is None:
|
757 |
+
is_bad = True
|
758 |
+
break
|
759 |
+
sub_tokens.append(cur_substr)
|
760 |
+
start = end
|
761 |
+
|
762 |
+
if is_bad:
|
763 |
+
output_tokens.append(self.unk_token)
|
764 |
+
else:
|
765 |
+
output_tokens.extend(sub_tokens)
|
766 |
+
return output_tokens
|
767 |
+
|
768 |
+
|
769 |
+
class SentencepieceTokenizer(object):
|
770 |
+
"""
|
771 |
+
Runs sentencepiece tokenization. Based on transformers.models.albert.tokenization_albert.AlbertTokenizer.
|
772 |
+
"""
|
773 |
+
|
774 |
+
def __init__(
|
775 |
+
self,
|
776 |
+
vocab,
|
777 |
+
unk_token,
|
778 |
+
do_lower_case=False,
|
779 |
+
remove_space=True,
|
780 |
+
keep_accents=True,
|
781 |
+
sp_model_kwargs: Optional[Dict[str, Any]] = None,
|
782 |
+
):
|
783 |
+
self.vocab = vocab
|
784 |
+
self.unk_token = unk_token
|
785 |
+
self.do_lower_case = do_lower_case
|
786 |
+
self.remove_space = remove_space
|
787 |
+
self.keep_accents = keep_accents
|
788 |
+
|
789 |
+
self.sp_model_kwargs = {} if sp_model_kwargs is None else sp_model_kwargs
|
790 |
+
self.sp_model = spm.SentencePieceProcessor(**self.sp_model_kwargs)
|
791 |
+
self.sp_model.Load(self.vocab)
|
792 |
+
|
793 |
+
def preprocess_text(self, inputs):
|
794 |
+
if self.remove_space:
|
795 |
+
outputs = " ".join(inputs.strip().split())
|
796 |
+
else:
|
797 |
+
outputs = inputs
|
798 |
+
outputs = outputs.replace("``", '"').replace("''", '"')
|
799 |
+
|
800 |
+
if not self.keep_accents:
|
801 |
+
outputs = unicodedata.normalize("NFKD", outputs)
|
802 |
+
outputs = "".join([c for c in outputs if not unicodedata.combining(c)])
|
803 |
+
if self.do_lower_case:
|
804 |
+
outputs = outputs.lower()
|
805 |
+
|
806 |
+
return outputs
|
807 |
+
|
808 |
+
def tokenize(self, text):
|
809 |
+
"""
|
810 |
+
Tokenizes text by sentencepiece. Based on [SentencePiece](https://github.com/google/sentencepiece).
|
811 |
+
Tokenization needs the given vocabulary.
|
812 |
+
|
813 |
+
Args:
|
814 |
+
text: A string needs to be tokenized.
|
815 |
+
|
816 |
+
Returns:
|
817 |
+
A list of sentencepiece tokens.
|
818 |
+
"""
|
819 |
+
text = self.preprocess_text(text)
|
820 |
+
pieces = self.sp_model.encode(text, out_type=str)
|
821 |
+
new_pieces = []
|
822 |
+
for piece in pieces:
|
823 |
+
if len(piece) > 1 and piece[-1] == str(",") and piece[-2].isdigit():
|
824 |
+
cur_pieces = self.sp_model.EncodeAsPieces(piece[:-1].replace(SPIECE_UNDERLINE, ""))
|
825 |
+
if piece[0] != SPIECE_UNDERLINE and cur_pieces[0][0] == SPIECE_UNDERLINE:
|
826 |
+
if len(cur_pieces[0]) == 1:
|
827 |
+
cur_pieces = cur_pieces[1:]
|
828 |
+
else:
|
829 |
+
cur_pieces[0] = cur_pieces[0][1:]
|
830 |
+
cur_pieces.append(piece[-1])
|
831 |
+
new_pieces.extend(cur_pieces)
|
832 |
+
else:
|
833 |
+
new_pieces.append(piece)
|
834 |
+
|
835 |
+
return new_pieces
|
special_tokens_map.json
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "[CLS]",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"cls_token": {
|
10 |
+
"content": "[CLS]",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"eos_token": {
|
17 |
+
"content": "[SEP]",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
},
|
23 |
+
"mask_token": {
|
24 |
+
"content": "[MASK]",
|
25 |
+
"lstrip": true,
|
26 |
+
"normalized": false,
|
27 |
+
"rstrip": false,
|
28 |
+
"single_word": false
|
29 |
+
},
|
30 |
+
"pad_token": {
|
31 |
+
"content": "<pad>",
|
32 |
+
"lstrip": false,
|
33 |
+
"normalized": false,
|
34 |
+
"rstrip": false,
|
35 |
+
"single_word": false
|
36 |
+
},
|
37 |
+
"sep_token": {
|
38 |
+
"content": "[SEP]",
|
39 |
+
"lstrip": false,
|
40 |
+
"normalized": false,
|
41 |
+
"rstrip": false,
|
42 |
+
"single_word": false
|
43 |
+
},
|
44 |
+
"unk_token": {
|
45 |
+
"content": "<unk>",
|
46 |
+
"lstrip": false,
|
47 |
+
"normalized": false,
|
48 |
+
"rstrip": false,
|
49 |
+
"single_word": false
|
50 |
+
}
|
51 |
+
}
|
spiece.model
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:bcfafc8c0662d9c8f39621a64c74260f2ad120310c8dd24886de2dddaf599b4e
|
3 |
+
size 439391
|
tokenizer_config.json
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"added_tokens_decoder": {
|
3 |
+
"0": {
|
4 |
+
"content": "<pad>",
|
5 |
+
"lstrip": false,
|
6 |
+
"normalized": false,
|
7 |
+
"rstrip": false,
|
8 |
+
"single_word": false,
|
9 |
+
"special": true
|
10 |
+
},
|
11 |
+
"1": {
|
12 |
+
"content": "<unk>",
|
13 |
+
"lstrip": false,
|
14 |
+
"normalized": false,
|
15 |
+
"rstrip": false,
|
16 |
+
"single_word": false,
|
17 |
+
"special": true
|
18 |
+
},
|
19 |
+
"2": {
|
20 |
+
"content": "[CLS]",
|
21 |
+
"lstrip": false,
|
22 |
+
"normalized": false,
|
23 |
+
"rstrip": false,
|
24 |
+
"single_word": false,
|
25 |
+
"special": true
|
26 |
+
},
|
27 |
+
"3": {
|
28 |
+
"content": "[SEP]",
|
29 |
+
"lstrip": false,
|
30 |
+
"normalized": false,
|
31 |
+
"rstrip": false,
|
32 |
+
"single_word": false,
|
33 |
+
"special": true
|
34 |
+
},
|
35 |
+
"4": {
|
36 |
+
"content": "[MASK]",
|
37 |
+
"lstrip": true,
|
38 |
+
"normalized": false,
|
39 |
+
"rstrip": false,
|
40 |
+
"single_word": false,
|
41 |
+
"special": true
|
42 |
+
}
|
43 |
+
},
|
44 |
+
"auto_map": {
|
45 |
+
"AutoTokenizer": [
|
46 |
+
"distilbert_japanese_tokenizer.DistilBertJapaneseTokenizer",
|
47 |
+
null
|
48 |
+
]
|
49 |
+
},
|
50 |
+
"bos_token": "[CLS]",
|
51 |
+
"clean_up_tokenization_spaces": true,
|
52 |
+
"cls_token": "[CLS]",
|
53 |
+
"do_lower_case": true,
|
54 |
+
"do_subword_tokenize": true,
|
55 |
+
"do_word_tokenize": true,
|
56 |
+
"eos_token": "[SEP]",
|
57 |
+
"jumanpp_kwargs": null,
|
58 |
+
"keep_accents": true,
|
59 |
+
"mask_token": "[MASK]",
|
60 |
+
"mecab_kwargs": {
|
61 |
+
"mecab_dic": "unidic_lite"
|
62 |
+
},
|
63 |
+
"model_max_length": 512,
|
64 |
+
"never_split": null,
|
65 |
+
"pad_token": "<pad>",
|
66 |
+
"remove_space": true,
|
67 |
+
"sep_token": "[SEP]",
|
68 |
+
"subword_tokenizer_type": "sentencepiece",
|
69 |
+
"sudachi_kwargs": null,
|
70 |
+
"tokenize_chinese_chars": false,
|
71 |
+
"tokenizer_class": "DistilBertJapaneseTokenizer",
|
72 |
+
"unk_token": "<unk>",
|
73 |
+
"word_tokenizer_type": "mecab"
|
74 |
+
}
|