Update README.md
Browse files
README.md
CHANGED
@@ -3,7 +3,13 @@ library_name: transformers
|
|
3 |
license: apache-2.0
|
4 |
base_model: answerdotai/ModernBERT-base
|
5 |
tags:
|
6 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
7 |
metrics:
|
8 |
- f1
|
9 |
- precision
|
@@ -11,6 +17,26 @@ metrics:
|
|
11 |
model-index:
|
12 |
- name: clapAI/modernBERT-base-multilingual-sentiment
|
13 |
results: []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
---
|
15 |
|
16 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
@@ -18,59 +44,232 @@ should probably proofread and complete it, then remove this comment. -->
|
|
18 |
|
19 |
# clapAI/modernBERT-base-multilingual-sentiment
|
20 |
|
21 |
-
|
22 |
-
It achieves the following results on the evaluation set:
|
23 |
-
- Loss: 0.4517
|
24 |
-
- F1: 0.8012
|
25 |
-
- Precision: 0.8020
|
26 |
-
- Recall: 0.8007
|
27 |
|
28 |
-
|
|
|
|
|
29 |
|
30 |
-
|
|
|
|
|
31 |
|
32 |
-
|
|
|
33 |
|
34 |
-
|
35 |
|
36 |
-
|
|
|
37 |
|
38 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
## Training procedure
|
41 |
|
42 |
### Training hyperparameters
|
43 |
|
44 |
The following hyperparameters were used during training:
|
45 |
-
- learning_rate: 5e-05
|
46 |
-
- train_batch_size: 512
|
47 |
-
- eval_batch_size: 512
|
48 |
-
- seed: 42
|
49 |
-
- distributed_type: multi-GPU
|
50 |
-
- num_devices: 2
|
51 |
-
- gradient_accumulation_steps: 2
|
52 |
-
- total_train_batch_size: 2048
|
53 |
-
- total_eval_batch_size: 1024
|
54 |
-
- optimizer: Use adamw_torch_fused with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
|
55 |
-
- lr_scheduler_type: cosine
|
56 |
-
- lr_scheduler_warmup_ratio: 0.01
|
57 |
-
- num_epochs: 5.0
|
58 |
-
- mixed_precision_training: Native AMP
|
59 |
-
|
60 |
-
### Training results
|
61 |
-
|
62 |
-
| Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall |
|
63 |
-
|:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:|
|
64 |
-
| 0.9287 | 1.0 | 1537 | 0.4626 | 0.7910 | 0.7940 | 0.7897 |
|
65 |
-
| 0.8356 | 2.0 | 3074 | 0.4441 | 0.8011 | 0.8009 | 0.8015 |
|
66 |
-
| 0.7488 | 3.0 | 4611 | 0.4517 | 0.8012 | 0.8020 | 0.8007 |
|
67 |
-
| 0.6177 | 4.0 | 6148 | 0.4915 | 0.7990 | 0.7989 | 0.7991 |
|
68 |
-
| 0.5174 | 5.0 | 7685 | 0.5464 | 0.7944 | 0.7945 | 0.7944 |
|
69 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
|
71 |
### Framework versions
|
72 |
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
license: apache-2.0
|
4 |
base_model: answerdotai/ModernBERT-base
|
5 |
tags:
|
6 |
+
- sentiment
|
7 |
+
- text-classification
|
8 |
+
- multilingual
|
9 |
+
- modernbert
|
10 |
+
- sentiment-analysis
|
11 |
+
- product-reviews
|
12 |
+
- place-reviews
|
13 |
metrics:
|
14 |
- f1
|
15 |
- precision
|
|
|
17 |
model-index:
|
18 |
- name: clapAI/modernBERT-base-multilingual-sentiment
|
19 |
results: []
|
20 |
+
datasets:
|
21 |
+
- clapAI/MultiLingualSentiment
|
22 |
+
language:
|
23 |
+
- en
|
24 |
+
- zh
|
25 |
+
- vi
|
26 |
+
- ko
|
27 |
+
- ja
|
28 |
+
- ar
|
29 |
+
- de
|
30 |
+
- es
|
31 |
+
- fr
|
32 |
+
- hi
|
33 |
+
- id
|
34 |
+
- it
|
35 |
+
- ms
|
36 |
+
- pt
|
37 |
+
- ru
|
38 |
+
- tr
|
39 |
+
pipeline_tag: text-classification
|
40 |
---
|
41 |
|
42 |
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
|
|
44 |
|
45 |
# clapAI/modernBERT-base-multilingual-sentiment
|
46 |
|
47 |
+
## Introduction
|
|
|
|
|
|
|
|
|
|
|
48 |
|
49 |
+
**modernBERT-base-multilingual-sentiment** is a multilingual sentiment classification model, part of
|
50 |
+
the [Multilingual-Sentiment](https://huggingface.co/collections/clapAI/multilingual-sentiment-677416a6b23e03f52cb6cc3f)
|
51 |
+
collection.
|
52 |
|
53 |
+
The model is fine-tuned from [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) using the
|
54 |
+
multilingual sentiment
|
55 |
+
dataset [clapAI/MultiLingualSentiment](https://huggingface.co/datasets/clapAI/MultiLingualSentiment).
|
56 |
|
57 |
+
Model supports multilingual sentiment classification across 16+ languages, including English, Vietnamese, Chinese,
|
58 |
+
French, Spanish, Portuguese, German, Italian, Russian, Japanese, Korean, Arabic, and more.
|
59 |
|
60 |
+
## Evaluation & Performance
|
61 |
|
62 |
+
After fine-tuning, the best model is loaded and evaluated on the `test` dataset
|
63 |
+
from [clapAI/MultiLingualSentiment](https://huggingface.co/datasets/clapAI/MultiLingualSentiment)
|
64 |
|
65 |
+
| Model | Pretrained Model | Parameters | Latency (ms) | F1 | Precision | Recall |
|
66 |
+
|:----------------------------------------------------------------------------------------------------------------:|:-----------------:|:-----------:|:------------:|:--------:|:---------:|:--------:|
|
67 |
+
| [modernBERT-base-multilingual-sentiment](https://huggingface.co/clapAI/modernBERT-base-multilingual-sentiment) | ModernBERT-base | 149.607.171 | Updating | 80.16 | 80.26 | 80.09 |
|
68 |
+
| [modernBERT-large-multilingual-sentiment](https://huggingface.co/clapAI/modernBERT-large-multilingual-sentiment) | ModernBERT-large | 395.833.346 | Updating | Updating | Updating | Updating |
|
69 |
+
| [roberta-base-multilingual-sentiment](https://huggingface.co/clapAI/roberta-base-multilingual-sentiment) | XLM-roberta-base | 278.045.186 | Updating | Updating | Updating | Updating |
|
70 |
+
| [roberta-large-multilingual-sentiment](https://huggingface.co/clapAI/roberta-large-multilingual-sentiment) | XLM-roberta-large | 559.892.482 | Updating | Updating | Updating | Updating |
|
71 |
+
|
72 |
+
## How to use
|
73 |
+
|
74 |
+
### Requirements
|
75 |
+
|
76 |
+
Since **transformers** only supports the **ModernBERT** architecture from version `4.48.0.dev0`, use the following
|
77 |
+
command to get the required version:
|
78 |
+
|
79 |
+
```bash
|
80 |
+
pip install "git+https://github.com/huggingface/transformers.git@6e0515e99c39444caae39472ee1b2fd76ece32f1" --upgrade
|
81 |
+
```
|
82 |
+
|
83 |
+
Install **FlashAttention** to accelerate inference performance
|
84 |
+
|
85 |
+
```bash
|
86 |
+
pip install flash-attn==2.7.2.post1
|
87 |
+
```
|
88 |
+
|
89 |
+
### Quick start
|
90 |
+
|
91 |
+
```python
|
92 |
+
import torch
|
93 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
94 |
+
|
95 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
96 |
+
|
97 |
+
model_id = "clapAI/modernBERT-base-multilingual-sentiment"
|
98 |
+
# Load the tokenizer and model
|
99 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
100 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_id, torch_dtype=torch.float16)
|
101 |
+
|
102 |
+
model.to(device)
|
103 |
+
model.eval()
|
104 |
+
|
105 |
+
|
106 |
+
# Retrieve labels from the model's configuration
|
107 |
+
id2label = model.config.id2label
|
108 |
+
|
109 |
+
texts = [
|
110 |
+
# English
|
111 |
+
{
|
112 |
+
"text": "I absolutely love the new design of this app!",
|
113 |
+
"label": "positive"
|
114 |
+
},
|
115 |
+
{
|
116 |
+
"text": "The customer service was disappointing.",
|
117 |
+
"label": "negative"
|
118 |
+
},
|
119 |
+
# Arabic
|
120 |
+
{
|
121 |
+
"text": "هذا المنتج رائع للغاية!",
|
122 |
+
"label": "positive"
|
123 |
+
},
|
124 |
+
{
|
125 |
+
"text": "الخدمة كانت سيئة للغاية.",
|
126 |
+
"label": "negative"
|
127 |
+
},
|
128 |
+
# German
|
129 |
+
{
|
130 |
+
"text": "Ich bin sehr zufrieden mit dem Kauf.",
|
131 |
+
"label": "positive"
|
132 |
+
},
|
133 |
+
{
|
134 |
+
"text": "Die Lieferung war eine Katastrophe.",
|
135 |
+
"label": "negative"
|
136 |
+
},
|
137 |
+
# Spanish
|
138 |
+
{
|
139 |
+
"text": "Este es el mejor libro que he leído.",
|
140 |
+
"label": "positive"
|
141 |
+
},
|
142 |
+
{
|
143 |
+
"text": "El producto llegó roto y no funciona.",
|
144 |
+
"label": "negative"
|
145 |
+
},
|
146 |
+
# French
|
147 |
+
{
|
148 |
+
"text": "J'adore ce restaurant, la nourriture est délicieuse!",
|
149 |
+
"label": "positive"
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"text": "Le service était très lent et désagréable.",
|
153 |
+
"label": "negative"
|
154 |
+
},
|
155 |
+
# Indonesian
|
156 |
+
{
|
157 |
+
"text": "Saya sangat senang dengan pelayanan ini.",
|
158 |
+
"label": "positive"
|
159 |
+
},
|
160 |
+
{
|
161 |
+
"text": "Makanannya benar-benar tidak enak.",
|
162 |
+
"label": "negative"
|
163 |
+
},
|
164 |
+
# Japanese
|
165 |
+
{
|
166 |
+
"text": "この製品は本当に素晴らしいです!",
|
167 |
+
"label": "positive"
|
168 |
+
},
|
169 |
+
{
|
170 |
+
"text": "サービスがひどかったです。",
|
171 |
+
"label": "negative"
|
172 |
+
},
|
173 |
+
# Korean
|
174 |
+
{
|
175 |
+
"text": "이 제품을 정말 좋아해요!",
|
176 |
+
"label": "positive"
|
177 |
+
},
|
178 |
+
{
|
179 |
+
"text": "고객 서비스가 정말 실망스러웠어요.",
|
180 |
+
"label": "negative"
|
181 |
+
},
|
182 |
+
# Russian
|
183 |
+
{
|
184 |
+
"text": "Этот фильм просто потрясающий!",
|
185 |
+
"label": "positive"
|
186 |
+
},
|
187 |
+
{
|
188 |
+
"text": "Качество было ужасным.",
|
189 |
+
"label": "negative"
|
190 |
+
},
|
191 |
+
# Vietnamese
|
192 |
+
{
|
193 |
+
"text": "Tôi thực sự yêu thích sản phẩm này!",
|
194 |
+
"label": "positive"
|
195 |
+
},
|
196 |
+
{
|
197 |
+
"text": "Dịch vụ khách hàng thật tệ.",
|
198 |
+
"label": "negative"
|
199 |
+
},
|
200 |
+
# Chinese
|
201 |
+
{
|
202 |
+
"text": "我非常喜欢这款产品!",
|
203 |
+
"label": "positive"
|
204 |
+
},
|
205 |
+
{
|
206 |
+
"text": "质量真的很差。",
|
207 |
+
"label": "negative"
|
208 |
+
}
|
209 |
+
]
|
210 |
+
|
211 |
+
for item in texts:
|
212 |
+
text = item["text"]
|
213 |
+
label = item["label"]
|
214 |
+
|
215 |
+
inputs = tokenizer(text, return_tensors="pt").to(device)
|
216 |
+
|
217 |
+
# Perform inference in inference mode
|
218 |
+
with torch.inference_mode():
|
219 |
+
outputs = model(**inputs)
|
220 |
+
predictions = outputs.logits.argmax(dim=-1)
|
221 |
+
print(f"Text: {text} | Label: {label} | Prediction: {id2label[predictions.item()]}")
|
222 |
+
|
223 |
+
|
224 |
+
```
|
225 |
|
226 |
## Training procedure
|
227 |
|
228 |
### Training hyperparameters
|
229 |
|
230 |
The following hyperparameters were used during training:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
231 |
|
232 |
+
```yaml
|
233 |
+
learning_rate: 5e-05
|
234 |
+
train_batch_size: 512
|
235 |
+
eval_batch_size: 512
|
236 |
+
seed: 42
|
237 |
+
distributed_type: multi-GPU
|
238 |
+
num_devices: 2
|
239 |
+
gradient_accumulation_steps: 2
|
240 |
+
total_train_batch_size: 2048
|
241 |
+
total_eval_batch_size: 1024
|
242 |
+
optimizer:
|
243 |
+
type: adamw_torch_fused
|
244 |
+
betas: [ 0.9, 0.999 ]
|
245 |
+
epsilon: 1e-08
|
246 |
+
optimizer_args: "No additional optimizer arguments"
|
247 |
+
lr_scheduler:
|
248 |
+
type: cosine
|
249 |
+
warmup_ratio: 0.01
|
250 |
+
num_epochs: 5.0
|
251 |
+
mixed_precision_training: Native AMP
|
252 |
+
|
253 |
+
```
|
254 |
|
255 |
### Framework versions
|
256 |
|
257 |
+
```plaintex
|
258 |
+
transformers==4.48.0.dev0
|
259 |
+
torch==2.4.0+cu121
|
260 |
+
datasets==3.2.0
|
261 |
+
tokenizers==0.21.0
|
262 |
+
flash-attn==2.7.2.post1
|
263 |
+
```
|
264 |
+
|
265 |
+
## Citation
|
266 |
+
|
267 |
+
If you find our project helpful, please star our repo and cite our work. Thanks!
|
268 |
+
|
269 |
+
```bibtex
|
270 |
+
@misc{modernBERT-base-multilingual-sentiment,
|
271 |
+
title={modernBERT-base-multilingual-sentiment: A Multilingual Sentiment Classification Model},
|
272 |
+
author={clapAI},
|
273 |
+
howpublished={\url{https://huggingface.co/clapAI/modernBERT-base-multilingual-sentiment}},
|
274 |
+
year={2025},
|
275 |
+
}
|