File size: 9,198 Bytes
83268c8
5773d80
8251847
 
 
 
 
5773d80
8251847
 
 
5773d80
 
83268c8
 
8251847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5773d80
 
 
 
 
 
 
 
 
 
 
 
 
 
8251847
5773d80
 
 
 
 
 
 
 
8251847
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
---
library_name: sentence-transformers
license: mit
datasets:
- clips/beir-nl-mmarco
- clips/beir-nl-hotpotqa
- clips/beir-nl-fever
language: nl
base_model:
- clips/e5-large-v2-t2t
pipeline_tag: sentence-similarity
tags:
- transformers
---

# E5-large-v2-t2t-nl

This model is a fine-tuned version of [clips/e5-large-v2-t2t](https://huggingface.co/clips/e5-large-v2-t2t).

## Usage

Below is an example to encode queries and passages from the MS-MARCO passage ranking dataset.

```python
import torch.nn.functional as F

from torch import Tensor
from transformers import AutoTokenizer, AutoModel


def average_pool(last_hidden_states: Tensor,
                 attention_mask: Tensor) -> Tensor:
    last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
    return last_hidden.sum(dim=1) / attention_mask.sum(dim=1)[..., None]


# Each input text should start with "query: " or "passage: ".
# For tasks other than retrieval, you can simply use the "query: " prefix.
input_texts = [
    'query: hoeveel eiwitten moet een vrouw eten',
    'query: top definieer',
    "passage: Als algemene richtlijn geldt dat de gemiddelde eiwitbehoefte voor vrouwen van 19 tot 70 jaar volgens de CDC 46 gram per dag bedraagt. Maar, zoals je in deze tabel kunt zien, moet je dit verhogen als je zwanger bent of traint voor een marathon. Bekijk de onderstaande tabel om te zien hoeveel eiwitten je dagelijks zou moeten eten.",
    "passage: Definitie van top voor leerlingen Engels. : 1 het hoogste punt van een berg : de top van een berg. : 2 het hoogste niveau. : 3 een bijeenkomst of reeks bijeenkomsten tussen de leiders van twee of meer regeringen."
]

tokenizer = AutoTokenizer.from_pretrained('clips/e5-large-v2-t2t-nl')
model = AutoModel.from_pretrained('clips/e5-large-v2-t2t-nl')

# Tokenize the input texts
batch_dict = tokenizer(input_texts, max_length=512, padding=True, truncation=True, return_tensors='pt')

outputs = model(**batch_dict)
embeddings = average_pool(outputs.last_hidden_state, batch_dict['attention_mask'])

# normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
scores = (embeddings[:2] @ embeddings[2:].T) * 100
print(scores.tolist())
```

Below is an example for usage with sentence_transformers.
```python
from sentence_transformers import SentenceTransformer

# Load the model from Hugging Face
model = SentenceTransformer("clips/e5-large-v2-t2t-nl")

# Perform inference using encode_query/encode_document for retrieval,
# or encode_query for general purpose embeddings. Prompt prefixes
# are automatically added with these two methods.
queries = [
    'hoeveel eiwitten moet een vrouw eten',
    'top definieer',
]
documents = [
    'Als algemene richtlijn geldt dat de gemiddelde eiwitbehoefte voor vrouwen van 19 tot 70 jaar volgens de CDC 46 gram per dag bedraagt. Maar, zoals je in deze tabel kunt zien, moet je dit verhogen als je zwanger bent of traint voor een marathon. Bekijk de onderstaande tabel om te zien hoeveel eiwitten je dagelijks zou moeten eten.',
    'Definitie van top voor leerlingen Engels. : 1 het hoogste punt van een berg : de top van een berg. : 2 het hoogste niveau. : 3 een bijeenkomst of reeks bijeenkomsten tussen de leiders van twee of meer regeringen.',
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
print(query_embeddings.shape, document_embeddings.shape)
# (2, 1024) (2, 1024)

similarities = model.similarity(query_embeddings, document_embeddings)
# tensor([[0.7207, 0.2599],
#         [0.2797, 0.6588]])
```
## Benchmark Evaluation
Results on MTEB-NL (models introduced in [our paper](https://arxiv.org/abs/2509.12340) and the best model per size category are highlighted in bold):

| Model                                 | Prm  | Cls      | MLCls    | PCls     | Rrnk     | Rtr      | Clust    | STS      | AvgD     | AvgT     |
|---------------------------------------|------|----------|----------|----------|----------|----------|----------|----------|----------|----------|
| **Num. Datasets (→)**                 |      | 12       | 3        | 2        | 1        | 12       | 8        | 2        | 40       |          |
| **Supervised (small, <100M)**         |      |          |          |          |          |          |          |          |          |          |
| **e5-small-v2-t2t**                   | 33M  | 53.7     | 38.5     | 74.5     | 85.9     | 45.0     | 24.1     | 74.3     | 46.9     | 56.6     |
| **e5-small-v2-t2t-nl**                | 33M  | 55.3     | 40.9     | 74.9     | 86.0     | 49.9     | 28.0     | 74.1     | 49.8     | 58.4     |
| **e5-small-trm**                      | 41M  | 56.3     | 43.5     | **76.5** | **87.3** | 53.1     | 28.2     | 74.2     | 51.4     | 59.9     |
| **e5-small-trm-nl**                   | 41M  | **58.2** | **44.7** | 76.0     | 87.1     | **56.0** | **32.2** | **74.6** | **53.8** | **61.3** |
| **Supervised (base, <305M)**          |      |          |          |          |          |          |          |          |          |          |
| granite-embedding-107m-multilingual   | 107M | 53.9     | 41.8     | 70.1     | 84.7     | 50.2     | 29.8     | 68.4     | 49.4     | 57.0     |
| **e5-base-v2-t2t**                    | 109M | 54.4     | 40.3     | 73.3     | 85.6     | 46.2     | 25.5     | 73.2     | 47.8     | 56.9     |
| **e5-base-v2-t2t-nl**                 | 109M | 53.9     | 41.5     | 72.5     | 84.0     | 46.4     | 26.9     | 69.3     | 47.8     | 56.3     |
| multilingual-e5-small                 | 118M | 56.3     | 43.5     | 76.5     | 87.1     | 53.1     | 28.2     | 74.2     | 51.4     | 59.8     |
| paraphrase-multilingual-MiniLM-L12-v2 | 118M | 55.0     | 38.1     | 78.2     | 80.6     | 37.7     | 29.6     | 76.3     | 46.3     | 56.5     |
| **RobBERT-2023-base-ft**              | 124M | 58.1     | 44.6     | 72.7     | 84.7     | 51.6     | 32.9     | 68.5     | 52.0     | 59.0     |
| **e5-base-trm**                       | 124M | 58.1     | 44.4     | 76.7     | 88.3     | 55.8     | 28.1     | 74.9     | 52.9     | 60.9     |
| **e5-base-trm-nl**                    | 124M | **59.6** | **45.9** | 78.4     | 87.5     | 56.5     | **34.3** | 75.8     | **55.0** | **62.6** |
| potion-multilingual-128M              | 128M | 51.8     | 40.0     | 60.4     | 80.3     | 35.7     | 26.1     | 62.0     | 42.6     | 50.9     |
| multilingual-e5-base                  | 278M | 58.2     | 44.4     | 76.7     | **88.4** | 55.8     | 27.7     | 74.9     | 52.8     | 60.9     |
| granite-embedding-278m-multilingual   | 278M | 54.6     | 41.8     | 71.0     | 85.6     | 52.4     | 30.3     | 68.9     | 50.5     | 58.0     |
| paraphrase-multilingual-mpnet-base-v2 | 278M | 58.1     | 40.5     | **81.9** | 82.3     | 41.4     | 30.8     | 79.3     | 49.2     | 59.2     |
| Arctic-embed-m-v2.0                   | 305M | 54.4     | 42.6     | 66.6     | 86.2     | 51.8     | 26.5     | 64.9     | 49.1     | 56.1     |
| gte-multilingual-base                 | 305M | 59.1     | 37.7     | 77.8     | 82.3     | **56.8** | 31.3     | **78.6** | 53.8     | 60.5     |
| **Supervised (large, >305M)**         |      |          |          |          |          |          |          |          |          |          |
| **e5-large-v2-t2t**                   | 335M | 55.7     | 41.4     | 75.7     | 86.6     | 49.9     | 25.5     | 74.0     | 49.5     | 58.4     |
| **e5-large-v2-t2t-nl**                | 335M | 57.3     | 42.4     | 76.9     | 86.9     | 50.8     | 27.7     | 74.1     | 51.7     | 59.4     |
| **RobBERT-2023-large-ft**             | 355M | 59.3     | 45.2     | 68.7     | 82.3     | 48.3     | 31.6     | 70.6     | 51.0     | 58.0     |
| **e5-large-trm**                      | 355M | 60.2     | 45.4     | 80.3     | 90.3     | 59.0     | 28.7     | 78.8     | 55.1     | 63.3     |
| **e5-large-trm-nl**                   | 355M | **62.2** | **48.0** | **81.4** | 87.2     | 58.2     | 35.6     | 78.2     | **57.0** | **64.4** |
| multilingual-e5-large                 | 560M | 60.2     | 45.4     | 80.3     | **90.3** | 59.1     | 29.5     | 78.8     | 55.3     | 63.4     |
| Arctic-embed-l-v2.0                   | 568M | 59.3     | 45.2     | 74.2     | 88.2     | 59.0     | 29.8     | 71.7     | 54.3     | 61.1     |
| bge-m3                                | 568M | 60.7     | 44.2     | 78.3     | 88.7     | **60.0** | 29.2     | 78.1     | 55.4     | 63.1     |
| jina-embeddings-v3                    | 572M | 61.7     | 38.9     | 76.8     | 78.5     | 59.1     | **38.9** | **84.8** | **57.0** | 62.7     |

## Citation Information

If you find our paper, benchmark or models helpful, please consider cite as follows:
```latex
@misc{banar2025mtebnle5nlembeddingbenchmark,
      title={MTEB-NL and E5-NL: Embedding Benchmark and Models for Dutch}, 
      author={Nikolay Banar and Ehsan Lotfi and Jens Van Nooten and Cristina Arhiliuc and Marija Kliocaite and Walter Daelemans},
      year={2025},
      eprint={2509.12340},
      archivePrefix={arXiv},
      primaryClass={cs.CL},
      url={https://arxiv.org/abs/2509.12340}, 
}
```
[//]: # (https://arxiv.org/abs/2509.12340)