--- base_model: google/paligemma-3b-ft-docvqa-896 library_name: peft license: apache-2.0 datasets: - cmarkea/table-vqa language: - fr - en pipeline_tag: visual-question-answering --- ## Model Description **paligemma-3b-ft-tablevqa-896-lora** is a fine-tuned version of the **[google/paligemma-3b-ft-docvqa-896](https://huggingface.co/google/paligemma-3b-ft-docvqa-896)** model, trained specifically on the **[table-vqa](https://huggingface.co/datasets/cmarkea/table-vqa)** dataset published by Crédit Mutuel Arkéa. This model leverages the **LoRA** (Low-Rank Adaptation) technique, which significantly reduces the computational complexity of fine-tuning while maintaining high performance. The model operates in bfloat16 precision for efficiency, making it an ideal solution for resource-constrained environments. This model is designed for multilingual environments (French and English) and excels in table-based visual question-answering (VQA) tasks. It is highly suitable for extracting information from tables in documents, making it a strong candidate for applications in financial reporting, data analysis, or administrative document processing. The model was fine-tuned over a span of 7 days using a single A100 40GB GPU. ## Key Features - **Language:** Multilingual capabilities, optimized for French and English. - **Model Type:** Multi-modal (image-text-to-text). - **Precision:** bfloat16 for resource efficiency. - **Training Duration:** 7 days on A100 40GB GPU. - **Fine-Tuning Method:** LoRA (Low-Rank Adaptation). - **Domain:** Table-based visual question answering. ## Model Architecture This model was built on top of **[google/paligemma-3b-ft-docvqa-896](https://huggingface.co/google/paligemma-3b-ft-docvqa-896)**, using its pre-trained multi-modal capabilities to process both text and images (e.g., document tables). LoRA was applied to reduce the size and complexity of fine-tuning while preserving accuracy, allowing the model to excel in specific tasks such as table understanding and VQA. ## Usage You can use this model for visual question answering with table-based data by following the steps below: ```python from transformers import AutoProcessor, PaliGemmaForConditionalGeneration from PIL import Image import requests import torch device = "cuda" if torch.cuda.is_available() else "cpu" model_id = "cmarkea/paligemma-3b-ft-tablevqa-896-lora" # Sample image for inference url = "https://datasets-server.huggingface.co/cached-assets/cmarkea/table-vqa/--/c26968da3346f92ab6bfc5fec85592f8250e23f5/--/default/train/22/image/image.jpg?Expires=1728915081&Signature=Zkrd9ZWt5b9XtY0UFrgfrTuqo58DHWIJ00ZwXAymmL-mrwqnWWmiwUPelYOOjPZZdlP7gAvt96M1PKeg9a2TFm7hDrnnRAEO~W89li~AKU2apA81M6AZgwMCxc2A0xBe6rnCPQumiCGD7IsFnFVwcxkgMQXyNEL7bEem6cT0Cief9DkURUDCC-kheQY1hhkiqLLUt3ITs6o2KwPdW97EAQ0~VBK1cERgABKXnzPfAImnvjw7L-5ZXCcMJLrvuxwgOQ~DYPs456ZVxQLbTxuDwlxvNbpSKoqoAQv0CskuQwTFCq2b5MOkCCp9zoqYJxhUhJ-aI3lhyIAjmnsL4bhe6A__&Key-Pair-Id=K3EI6M078Z3AC3" image = Image.open(requests.get(url, stream=True).raw) # Load the fine-tuned model and processor model = PaliGemmaForConditionalGeneration.from_pretrained( model_id, torch_dtype=torch.bfloat16, device_map=device, ).eval() processor = AutoProcessor.from_pretrained("google/paligemma-3b-ft-docvqa-896") # Input prompt for table VQA prompt = "How many rows are in this table?" model_inputs = processor(text=prompt, images=image, return_tensors="pt").to(model.device) # Generate the answer input_len = model_inputs["input_ids"].shape[-1] with torch.inference_mode(): generation = model.generate(**model_inputs, max_new_tokens=100, do_sample=False) generation = generation[0][input_len:] decoded = processor.decode(generation, skip_special_tokens=True) print(decoded) ``` ## Performance The model's performance was evaluated on 200 question-answer pairs, extracted from 100 tables from the test set of the **[table-vqa](https://huggingface.co/datasets/cmarkea/table-vqa)** dataset. For each table, two pairs were selected: one in French and the other in English. To evaluate the model’s responses, the **[LLM-as-Juries](https://arxiv.org/abs/2404.18796)** framework was employed using three judge models (GPT-4o, Gemini1.5 Pro, and Claude 3.5-Sonnet). The evaluation was based on a scale from 0 to 5, tailored to the VQA context, ensuring accurate judgment of the model’s performance. Here’s a visualization of the results: ![constellation](https://i.postimg.cc/y6tkYg9F/constellation-03.png) In comparison, this model outperforms **[HuggingFaceM4/Idefics3-8B-Llama3](https://huggingface.co/HuggingFaceM4/Idefics3-8B-Llama3)** in terms of accuracy and efficiency, despite having a smaller parameter size. ## Citation ```bibtex @online{AgDePaligemmaTabVQA, AUTHOR = {Tom Agonnoude, Cyrile Delestre}, URL = {https://huggingface.co/cmarkea/paligemma-tablevqa-896-lora}, YEAR = {2024}, KEYWORDS = {Multimodal, VQA, Table Understanding, LoRA}, }