Upload lcpp-seedvr.patch
Browse filesTo use in replace of "lcpp.patch" here:
https://github.com/city96/ComfyUI-GGUF/tree/main/tools
- lcpp-seedvr.patch +472 -0
lcpp-seedvr.patch
ADDED
@@ -0,0 +1,472 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
diff --git a/common/common.cpp b/common/common.cpp
|
2 |
+
index a8eebb68..db9498aa 100644
|
3 |
+
--- a/common/common.cpp
|
4 |
+
+++ b/common/common.cpp
|
5 |
+
@@ -13,6 +13,7 @@
|
6 |
+
#include <algorithm>
|
7 |
+
#include <cinttypes>
|
8 |
+
#include <climits>
|
9 |
+
+#include <chrono>
|
10 |
+
#include <cmath>
|
11 |
+
#include <codecvt>
|
12 |
+
#include <cstdarg>
|
13 |
+
diff --git a/common/log.cpp b/common/log.cpp
|
14 |
+
index 04c7c0ed..83e2a7d9 100644
|
15 |
+
--- a/common/log.cpp
|
16 |
+
+++ b/common/log.cpp
|
17 |
+
@@ -4,6 +4,7 @@
|
18 |
+
#include <cstdarg>
|
19 |
+
#include <cstdio>
|
20 |
+
#include <mutex>
|
21 |
+
+#include <chrono>
|
22 |
+
#include <sstream>
|
23 |
+
#include <thread>
|
24 |
+
#include <vector>
|
25 |
+
diff --git a/ggml/include/ggml.h b/ggml/include/ggml.h
|
26 |
+
index de3c706f..0267c1fa 100644
|
27 |
+
--- a/ggml/include/ggml.h
|
28 |
+
+++ b/ggml/include/ggml.h
|
29 |
+
@@ -223,7 +223,7 @@
|
30 |
+
#define GGML_MAX_OP_PARAMS 64
|
31 |
+
|
32 |
+
#ifndef GGML_MAX_NAME
|
33 |
+
-# define GGML_MAX_NAME 64
|
34 |
+
+# define GGML_MAX_NAME 128
|
35 |
+
#endif
|
36 |
+
|
37 |
+
#define GGML_DEFAULT_N_THREADS 4
|
38 |
+
@@ -2449,6 +2449,7 @@ extern "C" {
|
39 |
+
|
40 |
+
// manage tensor info
|
41 |
+
GGML_API void gguf_add_tensor(struct gguf_context * ctx, const struct ggml_tensor * tensor);
|
42 |
+
+ GGML_API void gguf_set_tensor_ndim(struct gguf_context * ctx, const char * name, int n_dim);
|
43 |
+
GGML_API void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type);
|
44 |
+
GGML_API void gguf_set_tensor_data(struct gguf_context * ctx, const char * name, const void * data, size_t size);
|
45 |
+
|
46 |
+
diff --git a/ggml/src/ggml.c b/ggml/src/ggml.c
|
47 |
+
index b16c462f..6d1568f1 100644
|
48 |
+
--- a/ggml/src/ggml.c
|
49 |
+
+++ b/ggml/src/ggml.c
|
50 |
+
@@ -22960,6 +22960,14 @@ void gguf_add_tensor(
|
51 |
+
ctx->header.n_tensors++;
|
52 |
+
}
|
53 |
+
|
54 |
+
+void gguf_set_tensor_ndim(struct gguf_context * ctx, const char * name, const int n_dim) {
|
55 |
+
+ const int idx = gguf_find_tensor(ctx, name);
|
56 |
+
+ if (idx < 0) {
|
57 |
+
+ GGML_ABORT("tensor not found");
|
58 |
+
+ }
|
59 |
+
+ ctx->infos[idx].n_dims = n_dim;
|
60 |
+
+}
|
61 |
+
+
|
62 |
+
void gguf_set_tensor_type(struct gguf_context * ctx, const char * name, enum ggml_type type) {
|
63 |
+
const int idx = gguf_find_tensor(ctx, name);
|
64 |
+
if (idx < 0) {
|
65 |
+
diff --git a/src/llama.cpp b/src/llama.cpp
|
66 |
+
index 24e1f1f0..bac36971 100644
|
67 |
+
--- a/src/llama.cpp
|
68 |
+
+++ b/src/llama.cpp
|
69 |
+
@@ -205,6 +205,17 @@ enum llm_arch {
|
70 |
+
LLM_ARCH_GRANITE,
|
71 |
+
LLM_ARCH_GRANITE_MOE,
|
72 |
+
LLM_ARCH_CHAMELEON,
|
73 |
+
+ LLM_ARCH_FLUX,
|
74 |
+
+ LLM_ARCH_SD1,
|
75 |
+
+ LLM_ARCH_SDXL,
|
76 |
+
+ LLM_ARCH_SD3,
|
77 |
+
+ LLM_ARCH_AURA,
|
78 |
+
+ LLM_ARCH_LTXV,
|
79 |
+
+ LLM_ARCH_HYVID,
|
80 |
+
+ LLM_ARCH_WAN,
|
81 |
+
+ LLM_ARCH_HIDREAM,
|
82 |
+
+ LLM_ARCH_COSMOS,
|
83 |
+
+ LLM_ARCH_SEEDVR,
|
84 |
+
LLM_ARCH_UNKNOWN,
|
85 |
+
};
|
86 |
+
|
87 |
+
@@ -258,6 +269,17 @@ static const std::map<llm_arch, const char *> LLM_ARCH_NAMES = {
|
88 |
+
{ LLM_ARCH_GRANITE, "granite" },
|
89 |
+
{ LLM_ARCH_GRANITE_MOE, "granitemoe" },
|
90 |
+
{ LLM_ARCH_CHAMELEON, "chameleon" },
|
91 |
+
+ { LLM_ARCH_FLUX, "flux" },
|
92 |
+
+ { LLM_ARCH_SD1, "sd1" },
|
93 |
+
+ { LLM_ARCH_SDXL, "sdxl" },
|
94 |
+
+ { LLM_ARCH_SD3, "sd3" },
|
95 |
+
+ { LLM_ARCH_AURA, "aura" },
|
96 |
+
+ { LLM_ARCH_LTXV, "ltxv" },
|
97 |
+
+ { LLM_ARCH_HYVID, "hyvid" },
|
98 |
+
+ { LLM_ARCH_WAN, "wan" },
|
99 |
+
+ { LLM_ARCH_HIDREAM, "hidream" },
|
100 |
+
+ { LLM_ARCH_COSMOS, "cosmos" },
|
101 |
+
+ { LLM_ARCH_SEEDVR, "seedvr" },
|
102 |
+
{ LLM_ARCH_UNKNOWN, "(unknown)" },
|
103 |
+
};
|
104 |
+
|
105 |
+
@@ -1531,6 +1553,17 @@ static const std::map<llm_arch, std::map<llm_tensor, const char *>> LLM_TENSOR_N
|
106 |
+
{ LLM_TENSOR_ATTN_K_NORM, "blk.%d.attn_k_norm" },
|
107 |
+
},
|
108 |
+
},
|
109 |
+
+ { LLM_ARCH_FLUX, {}},
|
110 |
+
+ { LLM_ARCH_SD1, {}},
|
111 |
+
+ { LLM_ARCH_SDXL, {}},
|
112 |
+
+ { LLM_ARCH_SD3, {}},
|
113 |
+
+ { LLM_ARCH_AURA, {}},
|
114 |
+
+ { LLM_ARCH_LTXV, {}},
|
115 |
+
+ { LLM_ARCH_HYVID, {}},
|
116 |
+
+ { LLM_ARCH_WAN, {}},
|
117 |
+
+ { LLM_ARCH_HIDREAM, {}},
|
118 |
+
+ { LLM_ARCH_COSMOS, {}},
|
119 |
+
+ { LLM_ARCH_SEEDVR, {}},
|
120 |
+
{
|
121 |
+
LLM_ARCH_UNKNOWN,
|
122 |
+
{
|
123 |
+
@@ -5403,6 +5436,25 @@ static void llm_load_hparams(
|
124 |
+
// get general kv
|
125 |
+
ml.get_key(LLM_KV_GENERAL_NAME, model.name, false);
|
126 |
+
|
127 |
+
+ // Disable LLM metadata for image models
|
128 |
+
+ switch (model.arch) {
|
129 |
+
+ case LLM_ARCH_FLUX:
|
130 |
+
+ case LLM_ARCH_SD1:
|
131 |
+
+ case LLM_ARCH_SDXL:
|
132 |
+
+ case LLM_ARCH_SD3:
|
133 |
+
+ case LLM_ARCH_AURA:
|
134 |
+
+ case LLM_ARCH_LTXV:
|
135 |
+
+ case LLM_ARCH_HYVID:
|
136 |
+
+ case LLM_ARCH_WAN:
|
137 |
+
+ case LLM_ARCH_HIDREAM:
|
138 |
+
+ case LLM_ARCH_COSMOS:
|
139 |
+
+ case LLM_ARCH_SEEDVR:
|
140 |
+
+ model.ftype = ml.ftype;
|
141 |
+
+ return;
|
142 |
+
+ default:
|
143 |
+
+ break;
|
144 |
+
+ }
|
145 |
+
+
|
146 |
+
// get hparams kv
|
147 |
+
ml.get_key(LLM_KV_VOCAB_SIZE, hparams.n_vocab, false) || ml.get_arr_n(LLM_KV_TOKENIZER_LIST, hparams.n_vocab);
|
148 |
+
|
149 |
+
@@ -18016,6 +18068,132 @@ static void llama_tensor_dequantize_internal(
|
150 |
+
workers.clear();
|
151 |
+
}
|
152 |
+
|
153 |
+
+static ggml_type img_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
|
154 |
+
+ // Special function for quantizing image model tensors
|
155 |
+
+ const std::string name = ggml_get_name(tensor);
|
156 |
+
+ const llm_arch arch = qs.model.arch;
|
157 |
+
+
|
158 |
+
+ // Sanity check
|
159 |
+
+ if (
|
160 |
+
+ (name.find("model.diffusion_model.") != std::string::npos) ||
|
161 |
+
+ (name.find("first_stage_model.") != std::string::npos) ||
|
162 |
+
+ (name.find("single_transformer_blocks.") != std::string::npos) ||
|
163 |
+
+ (name.find("joint_transformer_blocks.") != std::string::npos)
|
164 |
+
+ ) {
|
165 |
+
+ throw std::runtime_error("Invalid input GGUF file. This is not a supported UNET model");
|
166 |
+
+ }
|
167 |
+
+
|
168 |
+
+ // Unsupported quant types - exclude all IQ quants for now
|
169 |
+
+ if (ftype == LLAMA_FTYPE_MOSTLY_IQ2_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ2_XS ||
|
170 |
+
+ ftype == LLAMA_FTYPE_MOSTLY_IQ2_S || ftype == LLAMA_FTYPE_MOSTLY_IQ2_M ||
|
171 |
+
+ ftype == LLAMA_FTYPE_MOSTLY_IQ3_XXS || ftype == LLAMA_FTYPE_MOSTLY_IQ1_S ||
|
172 |
+
+ ftype == LLAMA_FTYPE_MOSTLY_IQ1_M || ftype == LLAMA_FTYPE_MOSTLY_IQ4_NL ||
|
173 |
+
+ ftype == LLAMA_FTYPE_MOSTLY_IQ4_XS || ftype == LLAMA_FTYPE_MOSTLY_IQ3_S ||
|
174 |
+
+ ftype == LLAMA_FTYPE_MOSTLY_IQ3_M || ftype == LLAMA_FTYPE_MOSTLY_Q4_0_4_4 ||
|
175 |
+
+ ftype == LLAMA_FTYPE_MOSTLY_Q4_0_4_8 || ftype == LLAMA_FTYPE_MOSTLY_Q4_0_8_8) {
|
176 |
+
+ throw std::runtime_error("Invalid quantization type for image model (Not supported)");
|
177 |
+
+ }
|
178 |
+
+
|
179 |
+
+ if ( // Rules for to_v attention
|
180 |
+
+ (name.find("attn_v.weight") != std::string::npos) ||
|
181 |
+
+ (name.find(".to_v.weight") != std::string::npos) ||
|
182 |
+
+ (name.find(".v.weight") != std::string::npos) ||
|
183 |
+
+ (name.find(".attn.w1v.weight") != std::string::npos) ||
|
184 |
+
+ (name.find(".attn.w2v.weight") != std::string::npos) ||
|
185 |
+
+ (name.find("_attn.v_proj.weight") != std::string::npos)
|
186 |
+
+ ){
|
187 |
+
+ if (ftype == LLAMA_FTYPE_MOSTLY_Q2_K) {
|
188 |
+
+ new_type = GGML_TYPE_Q3_K;
|
189 |
+
+ }
|
190 |
+
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
191 |
+
+ new_type = qs.i_attention_wv < 2 ? GGML_TYPE_Q5_K : GGML_TYPE_Q4_K;
|
192 |
+
+ }
|
193 |
+
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
|
194 |
+
+ new_type = GGML_TYPE_Q5_K;
|
195 |
+
+ }
|
196 |
+
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) {
|
197 |
+
+ new_type = GGML_TYPE_Q6_K;
|
198 |
+
+ }
|
199 |
+
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S && qs.i_attention_wv < 4) {
|
200 |
+
+ new_type = GGML_TYPE_Q5_K;
|
201 |
+
+ }
|
202 |
+
+ ++qs.i_attention_wv;
|
203 |
+
+ } else if ( // Rules for fused qkv attention
|
204 |
+
+ (name.find("attn_qkv.weight") != std::string::npos) ||
|
205 |
+
+ (name.find("attn.qkv.weight") != std::string::npos)
|
206 |
+
+ ) {
|
207 |
+
+ if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M || ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
|
208 |
+
+ new_type = GGML_TYPE_Q4_K;
|
209 |
+
+ }
|
210 |
+
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
|
211 |
+
+ new_type = GGML_TYPE_Q5_K;
|
212 |
+
+ }
|
213 |
+
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) {
|
214 |
+
+ new_type = GGML_TYPE_Q6_K;
|
215 |
+
+ }
|
216 |
+
+ } else if ( // Rules for ffn
|
217 |
+
+ (name.find("ffn_down") != std::string::npos) ||
|
218 |
+
+ ((name.find("experts.") != std::string::npos) && (name.find(".w2.weight") != std::string::npos)) ||
|
219 |
+
+ (name.find(".ffn.2.weight") != std::string::npos) || // is this even the right way around?
|
220 |
+
+ (name.find(".ff.net.2.weight") != std::string::npos) ||
|
221 |
+
+ (name.find(".mlp.layer2.weight") != std::string::npos) ||
|
222 |
+
+ (name.find(".adaln_modulation_mlp.2.weight") != std::string::npos)
|
223 |
+
+ ) {
|
224 |
+
+ // TODO: add back `layer_info` with some model specific logic + logic further down
|
225 |
+
+ if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_M) {
|
226 |
+
+ new_type = GGML_TYPE_Q4_K;
|
227 |
+
+ }
|
228 |
+
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q3_K_L) {
|
229 |
+
+ new_type = GGML_TYPE_Q5_K;
|
230 |
+
+ }
|
231 |
+
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_S) {
|
232 |
+
+ new_type = GGML_TYPE_Q5_K;
|
233 |
+
+ }
|
234 |
+
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_K_M) {
|
235 |
+
+ new_type = GGML_TYPE_Q6_K;
|
236 |
+
+ }
|
237 |
+
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_K_M) {
|
238 |
+
+ new_type = GGML_TYPE_Q6_K;
|
239 |
+
+ }
|
240 |
+
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q4_0) {
|
241 |
+
+ new_type = GGML_TYPE_Q4_1;
|
242 |
+
+ }
|
243 |
+
+ else if (ftype == LLAMA_FTYPE_MOSTLY_Q5_0) {
|
244 |
+
+ new_type = GGML_TYPE_Q5_1;
|
245 |
+
+ }
|
246 |
+
+ ++qs.i_ffn_down;
|
247 |
+
+ }
|
248 |
+
+
|
249 |
+
+ // Sanity check for row shape
|
250 |
+
+ bool convert_incompatible_tensor = false;
|
251 |
+
+ if (new_type == GGML_TYPE_Q2_K || new_type == GGML_TYPE_Q3_K || new_type == GGML_TYPE_Q4_K ||
|
252 |
+
+ new_type == GGML_TYPE_Q5_K || new_type == GGML_TYPE_Q6_K) {
|
253 |
+
+ int nx = tensor->ne[0];
|
254 |
+
+ int ny = tensor->ne[1];
|
255 |
+
+ if (nx % QK_K != 0) {
|
256 |
+
+ LLAMA_LOG_WARN("\n\n%s : tensor cols %d x %d are not divisible by %d, required for %s", __func__, nx, ny, QK_K, ggml_type_name(new_type));
|
257 |
+
+ convert_incompatible_tensor = true;
|
258 |
+
+ } else {
|
259 |
+
+ ++qs.n_k_quantized;
|
260 |
+
+ }
|
261 |
+
+ }
|
262 |
+
+ if (convert_incompatible_tensor) {
|
263 |
+
+ // TODO: Possibly reenable this in the future
|
264 |
+
+ // switch (new_type) {
|
265 |
+
+ // case GGML_TYPE_Q2_K:
|
266 |
+
+ // case GGML_TYPE_Q3_K:
|
267 |
+
+ // case GGML_TYPE_Q4_K: new_type = GGML_TYPE_Q5_0; break;
|
268 |
+
+ // case GGML_TYPE_Q5_K: new_type = GGML_TYPE_Q5_1; break;
|
269 |
+
+ // case GGML_TYPE_Q6_K: new_type = GGML_TYPE_Q8_0; break;
|
270 |
+
+ // default: throw std::runtime_error("\nUnsupported tensor size encountered\n");
|
271 |
+
+ // }
|
272 |
+
+ new_type = GGML_TYPE_F16;
|
273 |
+
+ LLAMA_LOG_WARN(" - using fallback quantization %s\n", ggml_type_name(new_type));
|
274 |
+
+ ++qs.n_fallback;
|
275 |
+
+ }
|
276 |
+
+ return new_type;
|
277 |
+
+}
|
278 |
+
+
|
279 |
+
static ggml_type llama_tensor_get_type(quantize_state_internal & qs, ggml_type new_type, const ggml_tensor * tensor, llama_ftype ftype) {
|
280 |
+
const std::string name = ggml_get_name(tensor);
|
281 |
+
|
282 |
+
@@ -18513,7 +18691,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
283 |
+
if (llama_model_has_encoder(&model)) {
|
284 |
+
n_attn_layer *= 3;
|
285 |
+
}
|
286 |
+
- GGML_ASSERT((qs.n_attention_wv == n_attn_layer) && "n_attention_wv is unexpected");
|
287 |
+
+ if (model.arch != LLM_ARCH_HYVID) { // TODO: Check why this fails
|
288 |
+
+ GGML_ASSERT((qs.n_attention_wv == n_attn_layer) && "n_attention_wv is unexpected");
|
289 |
+
+ }
|
290 |
+
}
|
291 |
+
|
292 |
+
size_t total_size_org = 0;
|
293 |
+
@@ -18547,6 +18727,51 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
294 |
+
ctx_outs[i_split] = gguf_init_empty();
|
295 |
+
}
|
296 |
+
gguf_add_tensor(ctx_outs[i_split], tensor);
|
297 |
+
+ // SD3 pos_embed needs special fix as first dim is 1, which gets truncated here
|
298 |
+
+ if (model.arch == LLM_ARCH_SD3) {
|
299 |
+
+ const std::string name = ggml_get_name(tensor);
|
300 |
+
+ if (name == "pos_embed" && tensor->ne[2] == 1) {
|
301 |
+
+ const int n_dim = 3;
|
302 |
+
+ gguf_set_tensor_ndim(ctx_outs[i_split], "pos_embed", n_dim);
|
303 |
+
+ LLAMA_LOG_INFO("\n%s: Correcting pos_embed shape for SD3: [key:%s]\n", __func__, tensor->name);
|
304 |
+
+ }
|
305 |
+
+ }
|
306 |
+
+ // same goes for auraflow
|
307 |
+
+ if (model.arch == LLM_ARCH_AURA) {
|
308 |
+
+ const std::string name = ggml_get_name(tensor);
|
309 |
+
+ if (name == "positional_encoding" && tensor->ne[2] == 1) {
|
310 |
+
+ const int n_dim = 3;
|
311 |
+
+ gguf_set_tensor_ndim(ctx_outs[i_split], "positional_encoding", n_dim);
|
312 |
+
+ LLAMA_LOG_INFO("\n%s: Correcting positional_encoding shape for AuraFlow: [key:%s]\n", __func__, tensor->name);
|
313 |
+
+ }
|
314 |
+
+ if (name == "register_tokens" && tensor->ne[2] == 1) {
|
315 |
+
+ const int n_dim = 3;
|
316 |
+
+ gguf_set_tensor_ndim(ctx_outs[i_split], "register_tokens", n_dim);
|
317 |
+
+ LLAMA_LOG_INFO("\n%s: Correcting register_tokens shape for AuraFlow: [key:%s]\n", __func__, tensor->name);
|
318 |
+
+ }
|
319 |
+
+ }
|
320 |
+
+ // conv3d fails due to max dims - unsure what to do here as we never even reach this check
|
321 |
+
+ if (model.arch == LLM_ARCH_HYVID) {
|
322 |
+
+ const std::string name = ggml_get_name(tensor);
|
323 |
+
+ if (name == "img_in.proj.weight" && tensor->ne[5] != 1 ) {
|
324 |
+
+ throw std::runtime_error("img_in.proj.weight size failed for HyVid");
|
325 |
+
+ }
|
326 |
+
+ }
|
327 |
+
+ // All the modulation layers also have dim1, and I think conv3d fails here too but we segfaul way before that...
|
328 |
+
+ if (model.arch == LLM_ARCH_WAN) {
|
329 |
+
+ const std::string name = ggml_get_name(tensor);
|
330 |
+
+ if (name.find(".modulation") != std::string::npos && tensor->ne[2] == 1) {
|
331 |
+
+ const int n_dim = 3;
|
332 |
+
+ gguf_set_tensor_ndim(ctx_outs[i_split], tensor->name, n_dim);
|
333 |
+
+ LLAMA_LOG_INFO("\n%s: Correcting shape for Wan: [key:%s]\n", __func__, tensor->name);
|
334 |
+
+ }
|
335 |
+
+ // FLF2V model only
|
336 |
+
+ if (name == "img_emb.emb_pos") {
|
337 |
+
+ const int n_dim = 3;
|
338 |
+
+ gguf_set_tensor_ndim(ctx_outs[i_split], tensor->name, n_dim);
|
339 |
+
+ LLAMA_LOG_INFO("\n%s: Correcting shape for Wan FLF2V: [key:%s]\n", __func__, tensor->name);
|
340 |
+
+ }
|
341 |
+
+ }
|
342 |
+
}
|
343 |
+
|
344 |
+
// Set split info if needed
|
345 |
+
@@ -18647,6 +18872,109 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
346 |
+
// do not quantize relative position bias (T5)
|
347 |
+
quantize &= name.find("attn_rel_b.weight") == std::string::npos;
|
348 |
+
|
349 |
+
+ // rules for image models
|
350 |
+
+ bool image_model = false;
|
351 |
+
+ if (model.arch == LLM_ARCH_FLUX) {
|
352 |
+
+ image_model = true;
|
353 |
+
+ quantize &= name.find("txt_in.") == std::string::npos;
|
354 |
+
+ quantize &= name.find("img_in.") == std::string::npos;
|
355 |
+
+ quantize &= name.find("time_in.") == std::string::npos;
|
356 |
+
+ quantize &= name.find("vector_in.") == std::string::npos;
|
357 |
+
+ quantize &= name.find("guidance_in.") == std::string::npos;
|
358 |
+
+ quantize &= name.find("final_layer.") == std::string::npos;
|
359 |
+
+ }
|
360 |
+
+ if (model.arch == LLM_ARCH_SD1 || model.arch == LLM_ARCH_SDXL) {
|
361 |
+
+ image_model = true;
|
362 |
+
+ quantize &= name.find("class_embedding.") == std::string::npos;
|
363 |
+
+ quantize &= name.find("time_embedding.") == std::string::npos;
|
364 |
+
+ quantize &= name.find("add_embedding.") == std::string::npos;
|
365 |
+
+ quantize &= name.find("time_embed.") == std::string::npos;
|
366 |
+
+ quantize &= name.find("label_emb.") == std::string::npos;
|
367 |
+
+ quantize &= name.find("conv_in.") == std::string::npos;
|
368 |
+
+ quantize &= name.find("conv_out.") == std::string::npos;
|
369 |
+
+ quantize &= name != "input_blocks.0.0.weight";
|
370 |
+
+ quantize &= name != "out.2.weight";
|
371 |
+
+ }
|
372 |
+
+ if (model.arch == LLM_ARCH_SD3) {
|
373 |
+
+ image_model = true;
|
374 |
+
+ quantize &= name.find("final_layer.") == std::string::npos;
|
375 |
+
+ quantize &= name.find("time_text_embed.") == std::string::npos;
|
376 |
+
+ quantize &= name.find("context_embedder.") == std::string::npos;
|
377 |
+
+ quantize &= name.find("t_embedder.") == std::string::npos;
|
378 |
+
+ quantize &= name.find("y_embedder.") == std::string::npos;
|
379 |
+
+ quantize &= name.find("x_embedder.") == std::string::npos;
|
380 |
+
+ quantize &= name != "proj_out.weight";
|
381 |
+
+ quantize &= name != "pos_embed";
|
382 |
+
+ }
|
383 |
+
+ if (model.arch == LLM_ARCH_AURA) {
|
384 |
+
+ image_model = true;
|
385 |
+
+ quantize &= name.find("t_embedder.") == std::string::npos;
|
386 |
+
+ quantize &= name.find("init_x_linear.") == std::string::npos;
|
387 |
+
+ quantize &= name != "modF.1.weight";
|
388 |
+
+ quantize &= name != "cond_seq_linear.weight";
|
389 |
+
+ quantize &= name != "final_linear.weight";
|
390 |
+
+ quantize &= name != "final_linear.weight";
|
391 |
+
+ quantize &= name != "positional_encoding";
|
392 |
+
+ quantize &= name != "register_tokens";
|
393 |
+
+ }
|
394 |
+
+ if (model.arch == LLM_ARCH_LTXV) {
|
395 |
+
+ image_model = true;
|
396 |
+
+ quantize &= name.find("adaln_single.") == std::string::npos;
|
397 |
+
+ quantize &= name.find("caption_projection.") == std::string::npos;
|
398 |
+
+ quantize &= name.find("patchify_proj.") == std::string::npos;
|
399 |
+
+ quantize &= name.find("proj_out.") == std::string::npos;
|
400 |
+
+ quantize &= name.find("scale_shift_table") == std::string::npos; // last block too
|
401 |
+
+ }
|
402 |
+
+ if (model.arch == LLM_ARCH_HYVID) {
|
403 |
+
+ image_model = true;
|
404 |
+
+ quantize &= name.find("txt_in.") == std::string::npos;
|
405 |
+
+ quantize &= name.find("img_in.") == std::string::npos;
|
406 |
+
+ quantize &= name.find("time_in.") == std::string::npos;
|
407 |
+
+ quantize &= name.find("vector_in.") == std::string::npos;
|
408 |
+
+ quantize &= name.find("guidance_in.") == std::string::npos;
|
409 |
+
+ quantize &= name.find("final_layer.") == std::string::npos;
|
410 |
+
+ }
|
411 |
+
+ if (model.arch == LLM_ARCH_WAN) {
|
412 |
+
+ image_model = true;
|
413 |
+
+ quantize &= name.find("modulation.") == std::string::npos;
|
414 |
+
+ quantize &= name.find("patch_embedding.") == std::string::npos;
|
415 |
+
+ quantize &= name.find("text_embedding.") == std::string::npos;
|
416 |
+
+ quantize &= name.find("time_projection.") == std::string::npos;
|
417 |
+
+ quantize &= name.find("time_embedding.") == std::string::npos;
|
418 |
+
+ quantize &= name.find("img_emb.") == std::string::npos;
|
419 |
+
+ quantize &= name.find("head.") == std::string::npos;
|
420 |
+
+ }
|
421 |
+
+ if (model.arch == LLM_ARCH_HIDREAM) {
|
422 |
+
+ image_model = true;
|
423 |
+
+ quantize &= name.find("p_embedder.") == std::string::npos;
|
424 |
+
+ quantize &= name.find("t_embedder.") == std::string::npos;
|
425 |
+
+ quantize &= name.find("x_embedder.") == std::string::npos;
|
426 |
+
+ quantize &= name.find("final_layer.") == std::string::npos;
|
427 |
+
+ quantize &= name.find(".ff_i.gate.weight") == std::string::npos;
|
428 |
+
+ quantize &= name.find("caption_projection.") == std::string::npos;
|
429 |
+
+ }
|
430 |
+
+ if (model.arch == LLM_ARCH_COSMOS) {
|
431 |
+
+ image_model = true;
|
432 |
+
+ quantize &= name.find("p_embedder.") == std::string::npos;
|
433 |
+
+ quantize &= name.find("t_embedder.") == std::string::npos;
|
434 |
+
+ quantize &= name.find("t_embedding_norm.") == std::string::npos;
|
435 |
+
+ quantize &= name.find("x_embedder.") == std::string::npos;
|
436 |
+
+ quantize &= name.find("pos_embedder.") == std::string::npos;
|
437 |
+
+ quantize &= name.find("final_layer.") == std::string::npos;
|
438 |
+
+ }
|
439 |
+
+ if (model.arch == LLM_ARCH_SEEDVR) {
|
440 |
+
+ image_model = true;
|
441 |
+
+ quantize &= name.find("emb_in.") == std::string::npos;
|
442 |
+
+ quantize &= name.find("txt_in.") == std::string::npos;
|
443 |
+
+ quantize &= name.find("vid_in.") == std::string::npos;
|
444 |
+
+ quantize &= name.find("vid_out.") == std::string::npos;
|
445 |
+
+ quantize &= name.find(".ada.") == std::string::npos;
|
446 |
+
+ }
|
447 |
+
+ // ignore 3D/4D tensors for image models as the code was never meant to handle these
|
448 |
+
+ if (image_model) {
|
449 |
+
+ quantize &= ggml_n_dims(tensor) == 2;
|
450 |
+
+ }
|
451 |
+
+
|
452 |
+
enum ggml_type new_type;
|
453 |
+
void * new_data;
|
454 |
+
size_t new_size;
|
455 |
+
@@ -18655,6 +18983,9 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
456 |
+
new_type = default_type;
|
457 |
+
|
458 |
+
// get more optimal quantization type based on the tensor shape, layer, etc.
|
459 |
+
+ if (image_model) {
|
460 |
+
+ new_type = img_tensor_get_type(qs, new_type, tensor, ftype);
|
461 |
+
+ } else {
|
462 |
+
if (!params->pure && ggml_is_quantized(default_type)) {
|
463 |
+
new_type = llama_tensor_get_type(qs, new_type, tensor, ftype);
|
464 |
+
}
|
465 |
+
@@ -18664,6 +18995,7 @@ static void llama_model_quantize_internal(const std::string & fname_inp, const s
|
466 |
+
if (params->output_tensor_type < GGML_TYPE_COUNT && strcmp(tensor->name, "output.weight") == 0) {
|
467 |
+
new_type = params->output_tensor_type;
|
468 |
+
}
|
469 |
+
+ }
|
470 |
+
|
471 |
+
// If we've decided to quantize to the same type the tensor is already
|
472 |
+
// in then there's nothing to do.
|