Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,59 @@
|
|
1 |
-
---
|
2 |
-
license: apache-2.0
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
base_model:
|
6 |
+
- WinKawaks/vit-tiny-patch16-224
|
7 |
+
- google/bert_uncased_L-2_H-128_A-2
|
8 |
+
pipeline_tag: image-to-text
|
9 |
+
library_name: transformers
|
10 |
+
tags:
|
11 |
+
- vit
|
12 |
+
- bert
|
13 |
+
- vision
|
14 |
+
- caption
|
15 |
+
- captioning
|
16 |
+
- image
|
17 |
+
---
|
18 |
+
An image captioning model, based on bert-tiny and vit-tiny, weighing only 40mb!
|
19 |
+
|
20 |
+
Works very fast on CPU.
|
21 |
+
|
22 |
+
```python
|
23 |
+
from transformers import AutoTokenizer, AutoImageProcessor, VisionEncoderDecoderModel
|
24 |
+
import requests, time
|
25 |
+
from PIL import Image
|
26 |
+
|
27 |
+
model_path = "cnmoro/nano-image-captioning"
|
28 |
+
|
29 |
+
# load the image captioning model and corresponding tokenizer and image processor
|
30 |
+
model = VisionEncoderDecoderModel.from_pretrained(model_path)
|
31 |
+
tokenizer = AutoTokenizer.from_pretrained(model_path)
|
32 |
+
image_processor = AutoImageProcessor.from_pretrained(model_path)
|
33 |
+
|
34 |
+
# preprocess an image
|
35 |
+
url = "https://upload.wikimedia.org/wikipedia/commons/thumb/4/47/New_york_times_square-terabass.jpg/800px-New_york_times_square-terabass.jpg"
|
36 |
+
image = Image.open(requests.get(url, stream=True).raw)
|
37 |
+
pixel_values = image_processor(image, return_tensors="pt").pixel_values
|
38 |
+
|
39 |
+
start = time.time()
|
40 |
+
|
41 |
+
# generate caption - suggested settings
|
42 |
+
generated_ids = model.generate(
|
43 |
+
pixel_values,
|
44 |
+
temperature=0.7,
|
45 |
+
top_p=0.8,
|
46 |
+
top_k=50,
|
47 |
+
num_beams=3 # you can use 1 for even faster inference with a small drop in quality
|
48 |
+
)
|
49 |
+
generated_text = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
50 |
+
|
51 |
+
end = time.time()
|
52 |
+
|
53 |
+
print(generated_text)
|
54 |
+
# a group of people are in the middle of a city.
|
55 |
+
|
56 |
+
print(f"Time taken: {end - start} seconds")
|
57 |
+
# Time taken: 0.07550048828125 seconds
|
58 |
+
# on CPU !
|
59 |
+
```
|