co-gy commited on
Commit
e7b99b0
·
verified ·
1 Parent(s): 5923e94

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +61 -3
README.md CHANGED
@@ -1,3 +1,61 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ datasets:
3
+ - Intel/orca_dpo_pairs
4
+ base_model:
5
+ - Qwen/Qwen2.5-0.5B-Instruct
6
+ license: apache-2.0
7
+ ---
8
+ # Fine-tuned Qwen/Qwen2.5-0.5B-Instruct Model
9
+
10
+ ## Model Overview
11
+
12
+ This is a fine-tuned version of the Qwen/Qwen2.5-0.5B-Instruct model. The fine-tuning process utilized the Intel/orca_dpo_pairs dataset and applied DPO (Direct Preference Optimization) and LoRA (Low-Rank Adaptation) techniques.
13
+
14
+ **Note**: This fine-tuning was done following the instructions in [this blog](https://towardsdatascience.com/fine-tune-a-mistral-7b-model-with-direct-preference-optimization-708042745aac).
15
+
16
+ ## Fine-tuning Details
17
+
18
+ - **Base Model**: Qwen/Qwen2.5-0.5B-Instruct
19
+ - **Dataset**: Intel/orca_dpo_pairs
20
+ - **Fine-tuning Method**: DPO + LoRA
21
+
22
+ ## Usage Instructions
23
+
24
+ ### Install Dependencies
25
+
26
+ Before using this model, make sure you have the following dependencies installed:
27
+
28
+ ```bash
29
+ pip install transformers datasets
30
+ ```
31
+
32
+ ### Load the model
33
+
34
+ ```python
35
+ import transformers
36
+ from transformers import AutoConfig, AutoModel, AutoTokenizer
37
+
38
+ tokenizer = AutoTokenizer.from_pretrained("drive/MyDrive/result/Qwen-DPO")
39
+
40
+ message = [
41
+ {"role": "system", "content": "You are a helpful assistant chatbot."},
42
+ {"role": "user", "content": "What is a Large Language Model?"}
43
+ ]
44
+ prompt = tokenizer.apply_chat_template(message, add_generation_prompt=True, tokenize=False)
45
+
46
+ pipeline = transformers.pipeline(
47
+ "text-generation",
48
+ model="co-gy/Qwen-DPO",
49
+ tokenizer=tokenizer
50
+ )
51
+
52
+ sequences = pipeline(
53
+ prompt,
54
+ do_sample=True,
55
+ temperature=0.7,
56
+ top_p=0.9,
57
+ num_return_sequences=1,
58
+ max_length=200,
59
+ )
60
+ print(sequences[0]['generated_text'])
61
+ ```