File size: 1,777 Bytes
da1b817
ef01089
da1b817
 
 
ef01089
da1b817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ef01089
da1b817
0ea2a4b
 
 
 
 
da1b817
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
04da77b
 
0ea2a4b
 
 
da1b817
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
---
license: mit
library_name: peft
tags:
- generated_from_trainer
base_model: facebook/bart-large-mnli
metrics:
- f1
- precision
- recall
- accuracy
model-index:
- name: eu_adapter01
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# eu_adapter01

This model is a fine-tuned version of [facebook/bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6074
- F1: 0.8169
- Precision: 0.7945
- Recall: 0.8406
- Accuracy: 0.8267

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 20
- num_epochs: 2

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     | Precision | Recall | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:|:--------:|
| 0.6875        | 0.625 | 10   | 0.6413          | 0.5625 | 1.0       | 0.3913 | 0.72     |
| 0.6028        | 1.25  | 20   | 0.6077          | 0.7971 | 0.7971    | 0.7971 | 0.8133   |
| 0.5901        | 1.875 | 30   | 0.6074          | 0.8169 | 0.7945    | 0.8406 | 0.8267   |


### Framework versions

- PEFT 0.10.0
- Transformers 4.41.2
- Pytorch 2.2.0+cu121
- Datasets 2.19.1
- Tokenizers 0.19.1