--- license: mit library_name: peft tags: - generated_from_trainer base_model: facebook/bart-large-mnli metrics: - f1 - precision - recall - accuracy model-index: - name: eu_adapter01 results: [] --- # eu_adapter01 This model is a fine-tuned version of [facebook/bart-large-mnli](https://huggingface.co/facebook/bart-large-mnli) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.6074 - F1: 0.8169 - Precision: 0.7945 - Recall: 0.8406 - Accuracy: 0.8267 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 20 - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 | Precision | Recall | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:------:|:---------:|:------:|:--------:| | 0.6875 | 0.625 | 10 | 0.6413 | 0.5625 | 1.0 | 0.3913 | 0.72 | | 0.6028 | 1.25 | 20 | 0.6077 | 0.7971 | 0.7971 | 0.7971 | 0.8133 | | 0.5901 | 1.875 | 30 | 0.6074 | 0.8169 | 0.7945 | 0.8406 | 0.8267 | ### Framework versions - PEFT 0.10.0 - Transformers 4.41.2 - Pytorch 2.2.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1