Hugging Face
Models
Datasets
Spaces
Community
Docs
Enterprise
Pricing
Log In
Sign Up
98.0
TFLOPS
70
114
224
Asankhaya Sharma
PRO
codelion
Follow
eugene6565's profile picture
sevyn87654's profile picture
ricardo6789's profile picture
348 followers
·
16 following
http://asankhaya.github.io/
asankhaya
codelion
asankhaya
AI & ML interests
Creator of OptiLLM, OpenEvolve, Adaptive Classifier, and Ellora. Pioneering a new category in AI infrastructure: inference-time compute for LLMs.
Recent Activity
reacted
to
their
post
with 🤯
3 days ago
🚀 Adaptive Classifier v0.0.17 Released - Major Accuracy Improvements! We've just released a major update fixing critical bugs that were causing 40-50% accuracy drops in our enterprise classifiers! Key Fixes: • Fixed k-parameter prediction bug causing massive accuracy loss • Improved incremental learning for new classes • Enhanced weight preservation during model updates Dramatic Results: • fraud-detection: 43.9% → 92.7% (+48.8%) https://huggingface.co/adaptive-classifier/fraud-detection • business-sentiment: 88.9% → 98.8% (+9.9%) https://huggingface.co/adaptive-classifier/business-sentiment• expense-category: 26.7% → 84.2% (+57.5%) https://huggingface.co/adaptive-classifier/expense-category • language-detection: 98.8% → 100% (+1.2%) https://huggingface.co/adaptive-classifier/language-detection 15/17 enterprise classifiers now maintain ≤5% accuracy difference from original performance! Other High-Performing Models: • email-security (93.8%): https://huggingface.co/adaptive-classifier/email-security • content-moderation (100%): https://huggingface.co/adaptive-classifier/content-moderation • pii-detection (100%): https://huggingface.co/adaptive-classifier/pii-detection Quick Start: from adaptive_classifier import AdaptiveClassifier classifier = AdaptiveClassifier.load("adaptive-classifier/fraud-detection") predictions = classifier.predict("Suspicious transaction pattern", k=3) Install: pip install --upgrade adaptive-classifier==0.0.17 All models: https://huggingface.co/adaptive-classifier 🎯 Production-ready continuous learning for enterprise text classification! #MachineLearning #TextClassification #ContinualLearning #EnterpriseAI
reacted
to
their
post
with 🚀
3 days ago
🚀 Adaptive Classifier v0.0.17 Released - Major Accuracy Improvements! We've just released a major update fixing critical bugs that were causing 40-50% accuracy drops in our enterprise classifiers! Key Fixes: • Fixed k-parameter prediction bug causing massive accuracy loss • Improved incremental learning for new classes • Enhanced weight preservation during model updates Dramatic Results: • fraud-detection: 43.9% → 92.7% (+48.8%) https://huggingface.co/adaptive-classifier/fraud-detection • business-sentiment: 88.9% → 98.8% (+9.9%) https://huggingface.co/adaptive-classifier/business-sentiment• expense-category: 26.7% → 84.2% (+57.5%) https://huggingface.co/adaptive-classifier/expense-category • language-detection: 98.8% → 100% (+1.2%) https://huggingface.co/adaptive-classifier/language-detection 15/17 enterprise classifiers now maintain ≤5% accuracy difference from original performance! Other High-Performing Models: • email-security (93.8%): https://huggingface.co/adaptive-classifier/email-security • content-moderation (100%): https://huggingface.co/adaptive-classifier/content-moderation • pii-detection (100%): https://huggingface.co/adaptive-classifier/pii-detection Quick Start: from adaptive_classifier import AdaptiveClassifier classifier = AdaptiveClassifier.load("adaptive-classifier/fraud-detection") predictions = classifier.predict("Suspicious transaction pattern", k=3) Install: pip install --upgrade adaptive-classifier==0.0.17 All models: https://huggingface.co/adaptive-classifier 🎯 Production-ready continuous learning for enterprise text classification! #MachineLearning #TextClassification #ContinualLearning #EnterpriseAI
reacted
to
their
post
with 🔥
3 days ago
🚀 Adaptive Classifier v0.0.17 Released - Major Accuracy Improvements! We've just released a major update fixing critical bugs that were causing 40-50% accuracy drops in our enterprise classifiers! Key Fixes: • Fixed k-parameter prediction bug causing massive accuracy loss • Improved incremental learning for new classes • Enhanced weight preservation during model updates Dramatic Results: • fraud-detection: 43.9% → 92.7% (+48.8%) https://huggingface.co/adaptive-classifier/fraud-detection • business-sentiment: 88.9% → 98.8% (+9.9%) https://huggingface.co/adaptive-classifier/business-sentiment• expense-category: 26.7% → 84.2% (+57.5%) https://huggingface.co/adaptive-classifier/expense-category • language-detection: 98.8% → 100% (+1.2%) https://huggingface.co/adaptive-classifier/language-detection 15/17 enterprise classifiers now maintain ≤5% accuracy difference from original performance! Other High-Performing Models: • email-security (93.8%): https://huggingface.co/adaptive-classifier/email-security • content-moderation (100%): https://huggingface.co/adaptive-classifier/content-moderation • pii-detection (100%): https://huggingface.co/adaptive-classifier/pii-detection Quick Start: from adaptive_classifier import AdaptiveClassifier classifier = AdaptiveClassifier.load("adaptive-classifier/fraud-detection") predictions = classifier.predict("Suspicious transaction pattern", k=3) Install: pip install --upgrade adaptive-classifier==0.0.17 All models: https://huggingface.co/adaptive-classifier 🎯 Production-ready continuous learning for enterprise text classification! #MachineLearning #TextClassification #ContinualLearning #EnterpriseAI
View all activity
Organizations
codelion
's datasets
31
Sort: Recently updated
codelion/SimpleQA-Verified
Viewer
•
Updated
12 days ago
•
1k
•
267
•
1
codelion/ifeval-high-quality-dpo
Viewer
•
Updated
14 days ago
•
501
•
113
codelion/finepdfs-1B
Viewer
•
Updated
15 days ago
•
186k
•
169
codelion/finepdfs-100M
Viewer
•
Updated
15 days ago
•
18.6k
•
146
•
1
codelion/finepdfs-10M
Viewer
•
Updated
15 days ago
•
7.54k
•
110
codelion/Qwen2.5-Coder-0.5B-Instruct-security-preference
Viewer
•
Updated
Aug 2
•
245
•
86
codelion/Qwen2.5-Coder-0.5B-Instruct-progressive-2M-context
Viewer
•
Updated
Jul 20
•
400
•
33
codelion/Llama-3.2-1B-Instruct-magpie-tool-calling
Viewer
•
Updated
Jul 18
•
1.2k
•
25
•
1
codelion/Qwen3-0.6B-icm-dpo-pairs
Viewer
•
Updated
Jul 18
•
122
•
19
codelion/Qwen3-0.6B-icm
Viewer
•
Updated
Jul 18
•
500
•
21
•
1
codelion/gemma-3-1b-it-magpie-reasoning
Viewer
•
Updated
Jul 18
•
131
•
70
•
1
codelion/Qwen3-0.6B-magpie
Viewer
•
Updated
Jul 12
•
735
•
29
•
1
codelion/Qwen3-0.6B-pts-thought-anchors
Viewer
•
Updated
Jul 10
•
148
•
16
•
2
codelion/DeepSeek-R1-Distill-Qwen-1.5B-pts-thought-anchors
Viewer
•
Updated
Jul 10
•
110
•
23
•
1
codelion/fineweb-edu-1B
Viewer
•
Updated
Jul 7
•
970k
•
100
codelion/dclm-baseline-1B
Viewer
•
Updated
Jul 7
•
774k
•
69
codelion/fineweb-edu-100M
Viewer
•
Updated
Jul 6
•
115k
•
264
codelion/dclm-baseline-100M
Viewer
•
Updated
Jul 6
•
77.2k
•
336
codelion/fineweb-edu-10M
Viewer
•
Updated
Jul 6
•
9.46k
•
51
codelion/dclm-baseline-10M
Viewer
•
Updated
Jul 6
•
7.95k
•
41
codelion/Qwen3-0.6B-pts-dpo-pairs
Viewer
•
Updated
May 19
•
681
•
9
•
2
codelion/Qwen3-0.6B-pts-steering-vectors
Viewer
•
Updated
May 19
•
1.38k
•
37
•
4
codelion/Qwen3-0.6B-pts
Viewer
•
Updated
May 19
•
1.38k
•
12
•
2
codelion/DeepSeek-R1-Distill-Qwen-1.5B-pts-steering-vectors
Preview
•
Updated
May 13
•
9
•
1
codelion/DeepSeek-R1-Distill-Qwen-1.5B-pts
Preview
•
Updated
May 13
•
14
•
1
codelion/DeepSeek-R1-Distill-Qwen-1.5B-pts-dpo-pairs
Preview
•
Updated
May 13
•
9
•
1
codelion/math500-cot-experiment
Viewer
•
Updated
Apr 30
•
1.5k
•
214
•
5
codelion/optillmbench
Viewer
•
Updated
Apr 15
•
500
•
95
•
5
codelion/optillm-router-dataset
Viewer
•
Updated
Apr 12
•
2.81k
•
35
•
6
codelion/Sky-T1_data_17k
Viewer
•
Updated
Jan 11
•
16.4k
•
14
•
1
Previous
1
2
Next