--- language: - en license: apache-2.0 tags: - text-generation - gpt2 - dataset-mixing - pretraining model-index: - name: gpt-2-70m results: - task: type: text-generation metrics: - name: MMLU (5-shot) type: accuracy value: 24.11 - name: HellaSwag (0-shot) type: accuracy value: 27.03 - name: ARC-Challenge (0-shot) type: accuracy value: 21.67 - name: PIQA (0-shot) type: accuracy value: 57.29 - name: WinoGrande (0-shot) type: accuracy value: 51.46 - name: TruthfulQA MC2 (0-shot) type: accuracy value: 47.31 - name: Average type: accuracy value: 38.15 datasets: - codelion/finepdfs-1B - codelion/dclm-baseline-1B - codelion/fineweb-edu-1B --- # GPT-2 70M - Optimal Dataset Mixing A 70M parameter GPT-2 model trained on 1 billion tokens using an optimized 50-30-20 dataset mixing strategy. ## Model Description This model demonstrates the effectiveness of careful dataset composition for efficient language model pretraining. Despite using **10x less training data** than GPT-2 (1B vs 10B tokens), it achieves competitive performance by leveraging an optimal mixture of high-quality data sources. **Architecture**: GPT-2 - **Parameters**: 70M (64.09M trainable) - **Layers**: 12 - **Hidden Size**: 512 - **Attention Heads**: 8 - **Context Length**: 1024 tokens - **Vocabulary Size**: 50,257 ## Training Data The model was trained on **1 billion tokens** with the following composition: - **50%** - FinePDFs (500M tokens): High-quality PDF content - **30%** - DCLM Baseline (300M tokens): Filtered web content - **20%** - FineWeb-Edu (200M tokens): Educational web content This 50-30-20 mixing ratio was identified through systematic experimentation as optimal for balanced performance across multiple domains. ## Training Details - **Total Tokens**: 1,000,000,000 - **Batch Size**: 24 (effective: 120 with gradient accumulation) - **Learning Rate**: 5e-4 → 5e-5 (cosine decay) - **Warmup Steps**: 162 (2% of total) - **Precision**: BFloat16 - **Optimizer**: AdamW - **Final Loss**: 2.92 ## Benchmark Results ### Performance Comparison | Benchmark | Our Model | Random | GPT-2 | vs Random | vs GPT-2 | |-----------|-----------|--------|-------|-----------|----------| | **MMLU** (5-shot) | 24.11% | 25.00% | 26.00% | -0.89% | -1.89% | | **HellaSwag** (0-shot) | 27.03% | 25.00% | 30.00% | +2.03% | -2.97% | | **ARC-Challenge** (0-shot) | 21.67% | 25.00% | 24.00% | -3.33% | -2.33% | | **PIQA** (0-shot) | 57.29% | 50.00% | 63.00% | +7.29% | -5.71% | | **WinoGrande** (0-shot) | 51.46% | 50.00% | 51.00% | +1.46% | +0.46% | | **TruthfulQA MC2** (0-shot) | **47.31%** | 25.00% | 40.00% | **+22.31%** | **+7.31%** | | **Average** | **38.15%** | 33.33% | 39.00% | **+4.81%** | **-0.85%** | ### Key Findings - **Performance Gap**: Only **0.85%** behind GPT-2 baseline (39.00%) - **Efficiency**: Achieves **84.9%** of GPT-2's performance improvement over random guessing - **Data Efficiency**: Competitive results with **10x less training data** - **TruthfulQA Excellence**: **+7.31%** above GPT-2 baseline, demonstrating superior factual accuracy ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM # Load model and tokenizer tokenizer = AutoTokenizer.from_pretrained("codelion/gpt-2-70m") model = AutoModelForCausalLM.from_pretrained("codelion/gpt-2-70m") # Generate text with better sampling parameters inputs = tokenizer("The future of AI is", return_tensors="pt") outputs = model.generate( **inputs, max_length=50, do_sample=True, # Enable sampling temperature=0.8, # Control randomness top_p=0.9, # Nucleus sampling pad_token_id=tokenizer.eos_token_id ) print(tokenizer.decode(outputs[0])) ``` ## Key Insights 1. **Data Quality > Quantity**: The 50-30-20 mixing strategy demonstrates that careful dataset composition can achieve strong performance with significantly reduced compute 2. **Factual Accuracy**: The model excels at truthfulness (TruthfulQA), likely due to high-quality FinePDF content (50%) 3. **Practical Commonsense**: Strong performance on PIQA and WinoGrande shows effective real-world reasoning 4. **Knowledge Gaps**: Below-random performance on MMLU and ARC-Challenge indicates insufficient academic/scientific knowledge for this scale ## Limitations - **Academic Knowledge**: Limited performance on academic benchmarks (MMLU, ARC-Challenge) - **Training Scale**: 1B tokens is insufficient for comprehensive world knowledge - **Parameter Count**: 70M parameters may limit capacity for complex reasoning ## Citation If you use this model/dataset, please cite: ```bibtex @article{sharma2025billion, title={The 1 Billion Token Challenge: Finding the Perfect Pre-training Mix}, author={Sharma, Asankhaya}, year={2025}, url={https://huggingface.co/blog/codelion/optimal-dataset-mixing/} } ``` For more details, see the [blog post](https://huggingface.co/blog/codelion/optimal-dataset-mixing/). ## Model Card Authors codelion ## Model Card Contact For questions or issues, please open an issue on the model repository.