Create README.md
Browse files
README.md
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
language:
|
4 |
+
- ko
|
5 |
+
- en
|
6 |
+
- zh
|
7 |
+
base_model:
|
8 |
+
- Qwen/Qwen3-1.7B
|
9 |
+
pipeline_tag: summarization
|
10 |
+
tags:
|
11 |
+
- qwen3
|
12 |
+
- korean
|
13 |
+
- summary
|
14 |
+
- summarization
|
15 |
+
- ko
|
16 |
+
---
|
17 |
+
|
18 |
+
# qwen3-1.7B-ko-summary-finetuned-06-12
|
19 |
+
|
20 |
+
A fine-tuned Qwen3-1.7B model specialized for abstractive summarization of Korean documents, particularly academic papers. This model was trained on high-quality Korean paper summarization data and enhanced with emotional multi-turn conversation data to expand vocabulary and improve generation quality.
|
21 |
+
|
22 |
+
## Model Description
|
23 |
+
|
24 |
+
- **Architecture**: Qwen3-1.7B
|
25 |
+
- **Fine-tuning Task**: Abstractive summarization
|
26 |
+
- **Training Data**: Korean academic paper summaries (e.g., KoreaScience dataset) + Emotional multi-turn conversation data
|
27 |
+
|
28 |
+
## Key Improvements
|
29 |
+
|
30 |
+
1. **Resolved Token Repetition Issue**: Fixed meaningless token repetition problems from the previous colli98/qwen3-1.7B-ko-summary-finetuned model
|
31 |
+
2. **Structured Summary Format**: Improved unstructured summary format issues for better coherence
|
32 |
+
3. **Enhanced Vocabulary**: Added emotional multi-turn conversation training data to expand vocabulary range beyond academic papers
|
33 |
+
|
34 |
+
## Intended Use
|
35 |
+
|
36 |
+
- Summarizing long Korean documents—especially research papers—into clear, concise overviews.
|
37 |
+
- Integrating into research tools, educational platforms, or automated document-processing pipelines.
|
38 |
+
|
39 |
+
## Performance Evaluation
|
40 |
+
|
41 |
+
### ROUGE Score Comparison
|
42 |
+
|
43 |
+
| Metric | Previous Model | Current Model | Improvement |
|
44 |
+
| ------------------------ | -------------- | ------------- | ----------- |
|
45 |
+
| **ROUGE-1 Precision** | 0.357 | 0.388 | **+8.7%** |
|
46 |
+
| **ROUGE-1 Recall** | 0.189 | 0.174 | -7.9% |
|
47 |
+
| **ROUGE-1 F-measure** | 0.247 | 0.241 | -2.4% |
|
48 |
+
| **ROUGE-2 Precision** | 0.109 | 0.169 | **+55.0%** |
|
49 |
+
| **ROUGE-2 Recall** | 0.058 | 0.076 | **+31.1%** |
|
50 |
+
| **ROUGE-2 F-measure** | 0.075 | 0.104 | **+38.7%** |
|
51 |
+
| **ROUGE-L Precision** | 0.269 | 0.328 | **+21.9%** |
|
52 |
+
| **ROUGE-L Recall** | 0.142 | 0.147 | **+3.5%** |
|
53 |
+
| **ROUGE-L F-measure** | 0.186 | 0.203 | **+9.1%** |
|
54 |
+
| **ROUGE-Lsum Precision** | 0.316 | 0.319 | **+0.9%** |
|
55 |
+
| **ROUGE-Lsum Recall** | 0.168 | 0.171 | **+1.8%** |
|
56 |
+
| **ROUGE-Lsum F-measure** | 0.219 | 0.223 | **+1.8%** |
|
57 |
+
|
58 |
+
### Performance Analysis
|
59 |
+
|
60 |
+
**Positive Improvements:**
|
61 |
+
|
62 |
+
- **Overall Precision Enhancement**: Improved precision across all metrics, indicating higher quality generated content
|
63 |
+
- **Significant ROUGE-2 Improvement**: Major improvement in bigram-level metrics, suggesting more natural and coherent sentence structure generation
|
64 |
+
|
65 |
+
**Trade-offs:**
|
66 |
+
|
67 |
+
- **Partial Recall Decrease**: Slight decrease in recall, particularly in ROUGE-1, suggesting potential missed content from reference texts
|
68 |
+
- **Room for Further Improvement**: All metrics remain below 0.4, indicating need for additional performance enhancements
|
69 |
+
|
70 |
+
**Conclusion**: Fine-tuning improved **generation quality (precision)** while showing slight trade-offs in **completeness (recall)**. The significant ROUGE-2 improvement represents meaningful progress in model performance.
|
71 |
+
|
72 |
+

|
73 |
+
|
74 |
+
## Limitations & Risks
|
75 |
+
|
76 |
+
- May produce inaccuracies or hallucinated content.
|
77 |
+
- Not intended for generating verbatim legal/medical texts or for extractive quotation.
|
78 |
+
- Users should verify critical facts against original sources.
|
79 |
+
|
80 |
+
## Installation
|
81 |
+
|
82 |
+
```bash
|
83 |
+
pip install transformers safetensors
|
84 |
+
```
|
85 |
+
|
86 |
+
## Usage
|
87 |
+
|
88 |
+
```python
|
89 |
+
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
|
90 |
+
|
91 |
+
tokenizer = AutoTokenizer.from_pretrained("your-username/qwen3-1.7B-ko-summary-finetuned-06-12")
|
92 |
+
model = AutoModelForSeq2SeqLM.from_pretrained("your-username/qwen3-1.7B-ko-summary-finetuned-06-12")
|
93 |
+
|
94 |
+
text = "여기에 긴 한국어 논문 텍스트를 입력하세요..."
|
95 |
+
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="longest")
|
96 |
+
summary_ids = model.generate(
|
97 |
+
**inputs,
|
98 |
+
max_length=150,
|
99 |
+
num_beams=4,
|
100 |
+
early_stopping=True
|
101 |
+
)
|
102 |
+
summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True)
|
103 |
+
print(summary)
|
104 |
+
```
|
105 |
+
|
106 |
+
## Files in This Repository
|
107 |
+
|
108 |
+
```bash
|
109 |
+
.
|
110 |
+
├── config.json
|
111 |
+
├── generation_config.json
|
112 |
+
├── model.safetensors
|
113 |
+
├── model.safetensors.index.json
|
114 |
+
├── tokenizer.json
|
115 |
+
├── tokenizer_config.json
|
116 |
+
├── special_tokens_map.json
|
117 |
+
├── vocab.json
|
118 |
+
├── merges.txt
|
119 |
+
└── added_tokens.json
|
120 |
+
```
|