--- license: mit language: - ko - en - zh base_model: - Qwen/Qwen3-1.7B pipeline_tag: summarization tags: - qwen3 - korean - summary - summarization - ko --- # qwen3-1.7B-ko-summary-finetuned-06-12 A fine-tuned Qwen3-1.7B model specialized for abstractive summarization of Korean documents, particularly academic papers. This model was trained on high-quality Korean paper summarization data and enhanced with emotional multi-turn conversation data to expand vocabulary and improve generation quality. ## Model Description - **Architecture**: Qwen3-1.7B - **Fine-tuning Task**: Abstractive summarization - **Training Data**: Korean academic paper summaries (e.g., KoreaScience dataset) + Emotional multi-turn conversation data ## Key Improvements 1. **Resolved Token Repetition Issue**: Fixed meaningless token repetition problems from the previous colli98/qwen3-1.7B-ko-summary-finetuned model 2. **Structured Summary Format**: Improved unstructured summary format issues for better coherence 3. **Enhanced Vocabulary**: Added emotional multi-turn conversation training data to expand vocabulary range beyond academic papers ## Intended Use - Summarizing long Korean documents—especially research papers—into clear, concise overviews. - Integrating into research tools, educational platforms, or automated document-processing pipelines. ## Performance Evaluation ### ROUGE Score Comparison | Metric | Previous Model | Current Model | Improvement | | ------------------------ | -------------- | ------------- | ----------- | | **ROUGE-1 Precision** | 0.357 | 0.388 | **+8.7%** | | **ROUGE-1 Recall** | 0.189 | 0.174 | -7.9% | | **ROUGE-1 F-measure** | 0.247 | 0.241 | -2.4% | | **ROUGE-2 Precision** | 0.109 | 0.169 | **+55.0%** | | **ROUGE-2 Recall** | 0.058 | 0.076 | **+31.1%** | | **ROUGE-2 F-measure** | 0.075 | 0.104 | **+38.7%** | | **ROUGE-L Precision** | 0.269 | 0.328 | **+21.9%** | | **ROUGE-L Recall** | 0.142 | 0.147 | **+3.5%** | | **ROUGE-L F-measure** | 0.186 | 0.203 | **+9.1%** | | **ROUGE-Lsum Precision** | 0.316 | 0.319 | **+0.9%** | | **ROUGE-Lsum Recall** | 0.168 | 0.171 | **+1.8%** | | **ROUGE-Lsum F-measure** | 0.219 | 0.223 | **+1.8%** | ### Performance Analysis **Positive Improvements:** - **Overall Precision Enhancement**: Improved precision across all metrics, indicating higher quality generated content - **Significant ROUGE-2 Improvement**: Major improvement in bigram-level metrics, suggesting more natural and coherent sentence structure generation **Trade-offs:** - **Partial Recall Decrease**: Slight decrease in recall, particularly in ROUGE-1, suggesting potential missed content from reference texts - **Room for Further Improvement**: All metrics remain below 0.4, indicating need for additional performance enhancements **Conclusion**: Fine-tuning improved **generation quality (precision)** while showing slight trade-offs in **completeness (recall)**. The significant ROUGE-2 improvement represents meaningful progress in model performance. ![ROUGE Score Comparison](rouge_comparison_chart.png) ## Limitations & Risks - May produce inaccuracies or hallucinated content. - Not intended for generating verbatim legal/medical texts or for extractive quotation. - Users should verify critical facts against original sources. ## Installation ```bash pip install transformers safetensors ``` ## Usage ```python from transformers import AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("your-username/qwen3-1.7B-ko-summary-finetuned-06-12") model = AutoModelForSeq2SeqLM.from_pretrained("your-username/qwen3-1.7B-ko-summary-finetuned-06-12") text = "여기에 긴 한국어 논문 텍스트를 입력하세요..." inputs = tokenizer(text, return_tensors="pt", truncation=True, padding="longest") summary_ids = model.generate( **inputs, max_length=150, num_beams=4, early_stopping=True ) summary = tokenizer.decode(summary_ids[0], skip_special_tokens=True) print(summary) ``` ## Files in This Repository ```bash . ├── config.json ├── generation_config.json ├── model.safetensors ├── model.safetensors.index.json ├── tokenizer.json ├── tokenizer_config.json ├── special_tokens_map.json ├── vocab.json ├── merges.txt └── added_tokens.json ```