MeghanaArakkal commited on
Commit
7a5980d
·
verified ·
1 Parent(s): 707cacf

Training in progress, step 94

Browse files
README.md CHANGED
@@ -1,178 +1,202 @@
1
  ---
2
- library_name: peft
3
- license: mit
4
  base_model: microsoft/Phi-3.5-mini-instruct
5
- tags:
6
- - axolotl
7
- - generated_from_trainer
8
- datasets:
9
- - collinear-ai/R1-Distill-SFT-numina-math-ensemble_8_train
10
- model-index:
11
- - name: sn_math_curator_on_ensemble_8
12
- results: []
13
  ---
14
 
15
- <!-- This model card has been generated automatically according to the information the Trainer had access to. You
16
- should probably proofread and complete it, then remove this comment. -->
17
 
18
- [<img src="https://raw.githubusercontent.com/axolotl-ai-cloud/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/axolotl-ai-cloud/axolotl)
19
- <details><summary>See axolotl config</summary>
20
 
21
- axolotl version: `0.7.0`
22
- ```yaml
23
- strict: false
24
- base_model: microsoft/Phi-3.5-mini-instruct
25
- tokenizer_config: microsoft/Phi-3.5-mini-instruct
26
- model_type: AutoModelForCausalLM
27
- tokenizer_type: AutoTokenizer
28
-
29
- # Output configuration
30
- hub_model_id: collinear-ai/sn_math_curator_on_ensemble_8
31
- dataset_prepared_path: data/sn_math_curator_on_ensemble_8
32
- output_dir: model/sn_math_curator_on_ensemble_8
33
-
34
- # Format the dataset into the right instruction format.
35
- chat_template: phi_3
36
- datasets:
37
- - path: collinear-ai/R1-Distill-SFT-numina-math-ensemble_8_train
38
- split: train
39
- type: chat_template
40
- chat_template: phi_3
41
- field_messages: train_conv
42
- message_field_role: role
43
- message_field_content: content
44
- train_on_inputs: false #FALSE
45
-
46
- val_set_size: 0.05
47
- # Data packing
48
- sequence_len: 8192
49
- eval_sample_packing: false
50
- sample_packing: false
51
- pad_to_sequence_len: true
52
- group_by_length: false
53
-
54
- # Lora config
55
- adapter: qlora
56
- lora_model_dir:
57
- load_in_8bit: false
58
- load_in_4bit: true
59
- lora_r: 128
60
- lora_alpha: 64
61
- lora_dropout: 0.2
62
- lora_target_linear: true
63
- lora_fan_in_fan_out:
64
- lora_target_modules:
65
- - gate_proj
66
- - down_proj
67
- - up_proj
68
- - q_proj
69
- - v_proj
70
- - k_proj
71
- - o_proj
72
- lora_modules_to_save:
73
- - embed_tokens
74
- - lm_head
75
-
76
-
77
- # Logging config
78
- wandb_project: sn-curators-downstream
79
- wandb_entity: nazneen
80
- wandb_name: curator_math_sn_ensemble_8_phi
81
-
82
- # Trainer config
83
- gradient_accumulation_steps: 2
84
- micro_batch_size: 10
85
- num_epochs: 1
86
- optimizer: paged_adamw_8bit
87
- lr_scheduler: cosine
88
- learning_rate: 5e-6
89
-
90
-
91
- bfloat16: true
92
- bf16: true
93
- fp16:
94
- tf32: false
95
-
96
- gradient_checkpointing: true
97
- early_stopping_patience:
98
- resume_from_checkpoint:
99
- local_rank:
100
- logging_steps: 10
101
- xformers_attention:
102
- flash_attention: true
103
- save_safetensors: true
104
-
105
-
106
-
107
- warmup_steps: 50
108
- evals_per_epoch: 3
109
- eval_table_size: 3
110
- eval_max_new_tokens: 2048
111
- saves_per_epoch: 40
112
- debug:
113
- deepspeed:
114
- weight_decay: 0.02
115
- fsdp_config:
116
- special_tokens:
117
- bos_token: "<s>"
118
- eos_token: "<|endoftext|>"
119
- unk_token: "<unk>"
120
- pad_token: "<|endoftext|>"
121
- ```
122
-
123
- </details><br>
124
-
125
- # sn_math_curator_on_ensemble_8
126
-
127
- This model is a fine-tuned version of [microsoft/Phi-3.5-mini-instruct](https://huggingface.co/microsoft/Phi-3.5-mini-instruct) on the collinear-ai/R1-Distill-SFT-numina-math-ensemble_8_train dataset.
128
- It achieves the following results on the evaluation set:
129
- - Loss: 0.3350
130
-
131
- ## Model description
132
-
133
- More information needed
134
-
135
- ## Intended uses & limitations
136
-
137
- More information needed
138
-
139
- ## Training and evaluation data
140
-
141
- More information needed
142
-
143
- ## Training procedure
144
-
145
- ### Training hyperparameters
146
-
147
- The following hyperparameters were used during training:
148
- - learning_rate: 5e-06
149
- - train_batch_size: 10
150
- - eval_batch_size: 10
151
- - seed: 42
152
- - distributed_type: multi-GPU
153
- - num_devices: 8
154
- - gradient_accumulation_steps: 2
155
- - total_train_batch_size: 160
156
- - total_eval_batch_size: 80
157
- - optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
158
- - lr_scheduler_type: cosine
159
- - lr_scheduler_warmup_steps: 50
160
- - num_epochs: 1.0
161
-
162
- ### Training results
163
-
164
- | Training Loss | Epoch | Step | Validation Loss |
165
- |:-------------:|:------:|:----:|:---------------:|
166
- | No log | 0.0003 | 1 | 0.7150 |
167
- | 0.3405 | 0.3333 | 1301 | 0.3525 |
168
- | 0.323 | 0.6667 | 2602 | 0.3369 |
169
- | 0.3195 | 1.0 | 3903 | 0.3350 |
170
 
171
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172
  ### Framework versions
173
 
174
- - PEFT 0.14.0
175
- - Transformers 4.48.3
176
- - Pytorch 2.5.1
177
- - Datasets 3.2.0
178
- - Tokenizers 0.21.0
 
1
  ---
 
 
2
  base_model: microsoft/Phi-3.5-mini-instruct
3
+ library_name: peft
 
 
 
 
 
 
 
4
  ---
5
 
6
+ # Model Card for Model ID
 
7
 
8
+ <!-- Provide a quick summary of what the model is/does. -->
 
9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10
 
11
 
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
  ### Framework versions
201
 
202
+ - PEFT 0.13.2
 
 
 
 
adapter_config.json CHANGED
@@ -3,8 +3,6 @@
3
  "auto_mapping": null,
4
  "base_model_name_or_path": "microsoft/Phi-3.5-mini-instruct",
5
  "bias": "none",
6
- "eva_config": null,
7
- "exclude_modules": null,
8
  "fan_in_fan_out": null,
9
  "inference_mode": true,
10
  "init_lora_weights": true,
@@ -13,7 +11,6 @@
13
  "layers_to_transform": null,
14
  "loftq_config": {},
15
  "lora_alpha": 64,
16
- "lora_bias": false,
17
  "lora_dropout": 0.2,
18
  "megatron_config": null,
19
  "megatron_core": "megatron.core",
@@ -27,14 +24,14 @@
27
  "revision": null,
28
  "target_modules": [
29
  "o_proj",
30
- "v_proj",
31
- "gate_up_proj",
32
- "q_proj",
33
  "k_proj",
 
 
34
  "gate_proj",
 
 
35
  "qkv_proj",
36
- "up_proj",
37
- "down_proj"
38
  ],
39
  "task_type": "CAUSAL_LM",
40
  "use_dora": false,
 
3
  "auto_mapping": null,
4
  "base_model_name_or_path": "microsoft/Phi-3.5-mini-instruct",
5
  "bias": "none",
 
 
6
  "fan_in_fan_out": null,
7
  "inference_mode": true,
8
  "init_lora_weights": true,
 
11
  "layers_to_transform": null,
12
  "loftq_config": {},
13
  "lora_alpha": 64,
 
14
  "lora_dropout": 0.2,
15
  "megatron_config": null,
16
  "megatron_core": "megatron.core",
 
24
  "revision": null,
25
  "target_modules": [
26
  "o_proj",
 
 
 
27
  "k_proj",
28
+ "q_proj",
29
+ "up_proj",
30
  "gate_proj",
31
+ "gate_up_proj",
32
+ "down_proj",
33
  "qkv_proj",
34
+ "v_proj"
 
35
  ],
36
  "task_type": "CAUSAL_LM",
37
  "use_dora": false,
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:448cbd6f2f17e919f2db329e1057735f45b1a940f43d6ef1f1612ff404b87f6d
3
  size 1199344216
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de8aa442a99b0055b4df079a8b63f00106d6b41ea53899a9ff33f521cbe8c740
3
  size 1199344216
config.json CHANGED
@@ -148,7 +148,7 @@
148
  "sliding_window": 262144,
149
  "tie_word_embeddings": false,
150
  "torch_dtype": "bfloat16",
151
- "transformers_version": "4.48.3",
152
  "use_cache": false,
153
  "vocab_size": 32064
154
  }
 
148
  "sliding_window": 262144,
149
  "tie_word_embeddings": false,
150
  "torch_dtype": "bfloat16",
151
+ "transformers_version": "4.46.1",
152
  "use_cache": false,
153
  "vocab_size": 32064
154
  }
tokenizer_config.json CHANGED
@@ -120,7 +120,6 @@
120
  "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'system') %}{{'<|system|>' + '\n' + message['content'] + '<|end|>' + '\n'}}{% elif (message['role'] == 'user') %}{{'<|user|>' + '\n' + message['content'] + '<|end|>' + '\n' + '<|assistant|>' + '\n'}}{% elif message['role'] == 'assistant' %}{{message['content'] + '<|end|>' + '\n'}}{% endif %}{% endfor %}",
121
  "clean_up_tokenization_spaces": false,
122
  "eos_token": "<|endoftext|>",
123
- "extra_special_tokens": {},
124
  "legacy": false,
125
  "model_max_length": 131072,
126
  "pad_token": "<|endoftext|>",
 
120
  "chat_template": "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'system') %}{{'<|system|>' + '\n' + message['content'] + '<|end|>' + '\n'}}{% elif (message['role'] == 'user') %}{{'<|user|>' + '\n' + message['content'] + '<|end|>' + '\n' + '<|assistant|>' + '\n'}}{% elif message['role'] == 'assistant' %}{{message['content'] + '<|end|>' + '\n'}}{% endif %}{% endfor %}",
121
  "clean_up_tokenization_spaces": false,
122
  "eos_token": "<|endoftext|>",
 
123
  "legacy": false,
124
  "model_max_length": 131072,
125
  "pad_token": "<|endoftext|>",
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:32dff8fdfeab5bc1699c7053ff5e994f81e14f638113c69dfd7bbb21ac554a22
3
- size 6968
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c673fd12296a7622b7a46d1a7aab69688b4fcb6f2a03cf9f35d55593ca9a04aa
3
+ size 6712