Upload model
Browse files- config.json +5 -3
- model.safetensors +3 -0
- modeling_wav2vec2_spkreg.py +764 -0
config.json
CHANGED
@@ -1,4 +1,5 @@
|
|
1 |
{
|
|
|
2 |
"activation_dropout": 0.0,
|
3 |
"adapter_attn_dim": null,
|
4 |
"adapter_kernel_size": 3,
|
@@ -6,11 +7,12 @@
|
|
6 |
"add_adapter": false,
|
7 |
"apply_spec_augment": true,
|
8 |
"architectures": [
|
9 |
-
"
|
10 |
],
|
11 |
"attention_dropout": 0.1,
|
12 |
"auto_map": {
|
13 |
-
"AutoConfig": "configuration_wav2vec2_spkreg.Wav2Vec2SpkRegConfig"
|
|
|
14 |
},
|
15 |
"bos_token_id": 1,
|
16 |
"classifier_proj_size": 256,
|
@@ -56,7 +58,6 @@
|
|
56 |
"feat_quantizer_dropout": 0.0,
|
57 |
"final_dropout": 0.0,
|
58 |
"freeze_feat_extract_train": true,
|
59 |
-
"gradient_checkpointing": true,
|
60 |
"hidden_act": "gelu",
|
61 |
"hidden_dropout": 0.1,
|
62 |
"hidden_size": 768,
|
@@ -119,6 +120,7 @@
|
|
119 |
1,
|
120 |
1
|
121 |
],
|
|
|
122 |
"transformers_version": "4.46.2",
|
123 |
"use_weighted_layer_sum": false,
|
124 |
"vocab_size": 32,
|
|
|
1 |
{
|
2 |
+
"_name_or_path": "facebook/wav2vec2-base",
|
3 |
"activation_dropout": 0.0,
|
4 |
"adapter_attn_dim": null,
|
5 |
"adapter_kernel_size": 3,
|
|
|
7 |
"add_adapter": false,
|
8 |
"apply_spec_augment": true,
|
9 |
"architectures": [
|
10 |
+
"Wav2Vec2SpkRegModel"
|
11 |
],
|
12 |
"attention_dropout": 0.1,
|
13 |
"auto_map": {
|
14 |
+
"AutoConfig": "configuration_wav2vec2_spkreg.Wav2Vec2SpkRegConfig",
|
15 |
+
"AutoModel": "modeling_wav2vec2_spkreg.Wav2Vec2SpkRegModel"
|
16 |
},
|
17 |
"bos_token_id": 1,
|
18 |
"classifier_proj_size": 256,
|
|
|
58 |
"feat_quantizer_dropout": 0.0,
|
59 |
"final_dropout": 0.0,
|
60 |
"freeze_feat_extract_train": true,
|
|
|
61 |
"hidden_act": "gelu",
|
62 |
"hidden_dropout": 0.1,
|
63 |
"hidden_size": 768,
|
|
|
120 |
1,
|
121 |
1
|
122 |
],
|
123 |
+
"torch_dtype": "float32",
|
124 |
"transformers_version": "4.46.2",
|
125 |
"use_weighted_layer_sum": false,
|
126 |
"vocab_size": 32,
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:132ac7f4ad2de4d6652f6f6b25354d0f4f22dbd7a8e94d9e03dd4e2518591ca9
|
3 |
+
size 377510584
|
modeling_wav2vec2_spkreg.py
ADDED
@@ -0,0 +1,764 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import math
|
2 |
+
import warnings
|
3 |
+
from typing import Union, Tuple, Optional
|
4 |
+
|
5 |
+
import torch
|
6 |
+
import torch.nn as nn
|
7 |
+
import torch.nn.functional as F
|
8 |
+
|
9 |
+
from transformers.modeling_utils import PreTrainedModel
|
10 |
+
from transformers.pytorch_utils import is_torch_greater_or_equal_than_1_13
|
11 |
+
from transformers.modeling_outputs import SequenceClassifierOutput, Wav2Vec2BaseModelOutput
|
12 |
+
from transformers.models.wav2vec2.modeling_wav2vec2 import (
|
13 |
+
Wav2Vec2ForPreTraining,
|
14 |
+
Wav2Vec2GumbelVectorQuantizer,
|
15 |
+
Wav2Vec2PositionalConvEmbedding,
|
16 |
+
Wav2Vec2FeatureProjection,
|
17 |
+
Wav2Vec2AttnAdapterLayer,
|
18 |
+
Wav2Vec2ForCTC,
|
19 |
+
Wav2Vec2FeatureEncoder,
|
20 |
+
Wav2Vec2EncoderStableLayerNorm,
|
21 |
+
Wav2Vec2Encoder,
|
22 |
+
Wav2Vec2Adapter,
|
23 |
+
safe_load_file,
|
24 |
+
_compute_mask_indices,
|
25 |
+
_HIDDEN_STATES_START_POSITION,
|
26 |
+
WAV2VEC2_ADAPTER_SAFE_FILE,
|
27 |
+
WAV2VEC2_ADAPTER_PT_FILE
|
28 |
+
)
|
29 |
+
from transformers.utils import (
|
30 |
+
cached_file,
|
31 |
+
is_safetensors_available,
|
32 |
+
logging,
|
33 |
+
)
|
34 |
+
|
35 |
+
from .configuration_wav2vec2_spkreg import Wav2Vec2SpkRegConfig
|
36 |
+
|
37 |
+
logger = logging.get_logger(__name__)
|
38 |
+
|
39 |
+
|
40 |
+
class Wav2Vec2SpkRegPreTrainedModel(PreTrainedModel):
|
41 |
+
"""
|
42 |
+
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
|
43 |
+
models.
|
44 |
+
"""
|
45 |
+
|
46 |
+
config_class = Wav2Vec2SpkRegConfig
|
47 |
+
base_model_prefix = "wav2vec2"
|
48 |
+
main_input_name = "input_values"
|
49 |
+
supports_gradient_checkpointing = True
|
50 |
+
_supports_flash_attn_2 = True
|
51 |
+
_supports_sdpa = True
|
52 |
+
|
53 |
+
def _init_weights(self, module):
|
54 |
+
"""Initialize the weights"""
|
55 |
+
# Wav2Vec2ForPreTraining last 2 linear layers need standard Linear init.
|
56 |
+
if isinstance(module, Wav2Vec2ForPreTraining):
|
57 |
+
module.project_hid.reset_parameters()
|
58 |
+
module.project_q.reset_parameters()
|
59 |
+
module.project_hid._is_hf_initialized = True
|
60 |
+
module.project_q._is_hf_initialized = True
|
61 |
+
# gumbel softmax requires special init
|
62 |
+
elif isinstance(module, Wav2Vec2GumbelVectorQuantizer):
|
63 |
+
module.weight_proj.weight.data.normal_(mean=0.0, std=1)
|
64 |
+
module.weight_proj.bias.data.zero_()
|
65 |
+
nn.init.uniform_(module.codevectors)
|
66 |
+
elif isinstance(module, Wav2Vec2PositionalConvEmbedding):
|
67 |
+
nn.init.normal_(
|
68 |
+
module.conv.weight,
|
69 |
+
mean=0,
|
70 |
+
std=2 * math.sqrt(1 / (module.conv.kernel_size[0] * module.conv.in_channels)),
|
71 |
+
)
|
72 |
+
nn.init.constant_(module.conv.bias, 0)
|
73 |
+
elif isinstance(module, Wav2Vec2FeatureProjection):
|
74 |
+
k = math.sqrt(1 / module.projection.in_features)
|
75 |
+
nn.init.uniform_(module.projection.weight, a=-k, b=k)
|
76 |
+
nn.init.uniform_(module.projection.bias, a=-k, b=k)
|
77 |
+
elif isinstance(module, nn.Linear):
|
78 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
79 |
+
|
80 |
+
if module.bias is not None:
|
81 |
+
module.bias.data.zero_()
|
82 |
+
elif isinstance(module, (nn.LayerNorm, nn.GroupNorm)):
|
83 |
+
module.bias.data.zero_()
|
84 |
+
module.weight.data.fill_(1.0)
|
85 |
+
elif isinstance(module, nn.Conv1d):
|
86 |
+
nn.init.kaiming_normal_(module.weight)
|
87 |
+
|
88 |
+
if module.bias is not None:
|
89 |
+
k = math.sqrt(module.groups / (module.in_channels * module.kernel_size[0]))
|
90 |
+
nn.init.uniform_(module.bias, a=-k, b=k)
|
91 |
+
|
92 |
+
def _get_feat_extract_output_lengths(
|
93 |
+
self, input_lengths: Union[torch.LongTensor, int], add_adapter: Optional[bool] = None
|
94 |
+
):
|
95 |
+
"""
|
96 |
+
Computes the output length of the convolutional layers
|
97 |
+
"""
|
98 |
+
|
99 |
+
add_adapter = self.config.add_adapter if add_adapter is None else add_adapter
|
100 |
+
|
101 |
+
def _conv_out_length(input_length, kernel_size, stride):
|
102 |
+
# 1D convolutional layer output length formula taken
|
103 |
+
# from https://pytorch.org/docs/stable/generated/torch.nn.Conv1d.html
|
104 |
+
return torch.div(input_length - kernel_size, stride, rounding_mode="floor") + 1
|
105 |
+
|
106 |
+
for kernel_size, stride in zip(self.config.conv_kernel, self.config.conv_stride):
|
107 |
+
input_lengths = _conv_out_length(input_lengths, kernel_size, stride)
|
108 |
+
|
109 |
+
if add_adapter:
|
110 |
+
for _ in range(self.config.num_adapter_layers):
|
111 |
+
input_lengths = _conv_out_length(input_lengths, 1, self.config.adapter_stride)
|
112 |
+
|
113 |
+
return input_lengths
|
114 |
+
|
115 |
+
def _get_feature_vector_attention_mask(
|
116 |
+
self, feature_vector_length: int, attention_mask: torch.LongTensor, add_adapter=None
|
117 |
+
):
|
118 |
+
# Effectively attention_mask.sum(-1), but not inplace to be able to run
|
119 |
+
# on inference mode.
|
120 |
+
non_padded_lengths = attention_mask.cumsum(dim=-1)[:, -1]
|
121 |
+
|
122 |
+
output_lengths = self._get_feat_extract_output_lengths(non_padded_lengths, add_adapter=add_adapter)
|
123 |
+
output_lengths = output_lengths.to(torch.long)
|
124 |
+
|
125 |
+
batch_size = attention_mask.shape[0]
|
126 |
+
|
127 |
+
attention_mask = torch.zeros(
|
128 |
+
(batch_size, feature_vector_length), dtype=attention_mask.dtype, device=attention_mask.device
|
129 |
+
)
|
130 |
+
# these two operations makes sure that all values before the output lengths idxs are attended to
|
131 |
+
attention_mask[(torch.arange(attention_mask.shape[0], device=attention_mask.device), output_lengths - 1)] = 1
|
132 |
+
attention_mask = attention_mask.flip([-1]).cumsum(-1).flip([-1]).bool()
|
133 |
+
return attention_mask
|
134 |
+
|
135 |
+
def _get_adapters(self):
|
136 |
+
if self.config.adapter_attn_dim is None:
|
137 |
+
raise ValueError(f"{self.__class__} has no adapter layers. Make sure to define `config.adapter_attn_dim`.")
|
138 |
+
|
139 |
+
adapter_weights = {}
|
140 |
+
for name, module in self.named_modules():
|
141 |
+
if isinstance(module, Wav2Vec2AttnAdapterLayer):
|
142 |
+
for param_name, param in module.named_parameters():
|
143 |
+
adapter_weights[".".join([name, param_name])] = param
|
144 |
+
|
145 |
+
if isinstance(self, Wav2Vec2ForCTC):
|
146 |
+
for name, param in self.lm_head.named_parameters():
|
147 |
+
adapter_weights[".".join(["lm_head", name])] = param
|
148 |
+
|
149 |
+
return adapter_weights
|
150 |
+
|
151 |
+
def init_adapter_layers(self):
|
152 |
+
"""
|
153 |
+
(Re-)initialize attention adapter layers and lm head for adapter-only fine-tuning
|
154 |
+
"""
|
155 |
+
# init attention adapters
|
156 |
+
for module in self.modules():
|
157 |
+
if isinstance(module, Wav2Vec2AttnAdapterLayer):
|
158 |
+
self._init_weights(module)
|
159 |
+
|
160 |
+
# init lm head
|
161 |
+
if isinstance(self, Wav2Vec2ForCTC):
|
162 |
+
self._init_weights(self.lm_head)
|
163 |
+
|
164 |
+
def load_adapter(self, target_lang: str, force_load=True, **kwargs):
|
165 |
+
r"""
|
166 |
+
Load a language adapter model from a pre-trained adapter model.
|
167 |
+
|
168 |
+
Parameters:
|
169 |
+
target_lang (`str`):
|
170 |
+
Has to be a language id of an existing adapter weight. Adapter weights are stored in the format
|
171 |
+
adapter.<lang>.safetensors or adapter.<lang>.bin
|
172 |
+
force_load (`bool`, defaults to `True`):
|
173 |
+
Whether the weights shall be loaded even if `target_lang` matches `self.target_lang`.
|
174 |
+
cache_dir (`Union[str, os.PathLike]`, *optional*):
|
175 |
+
Path to a directory in which a downloaded pretrained model configuration should be cached if the
|
176 |
+
standard cache should not be used.
|
177 |
+
force_download (`bool`, *optional*, defaults to `False`):
|
178 |
+
Whether or not to force the (re-)download of the model weights and configuration files, overriding the
|
179 |
+
cached versions if they exist.
|
180 |
+
resume_download:
|
181 |
+
Deprecated and ignored. All downloads are now resumed by default when possible.
|
182 |
+
Will be removed in v5 of Transformers.
|
183 |
+
proxies (`Dict[str, str]`, *optional*):
|
184 |
+
A dictionary of proxy servers to use by protocol or endpoint, e.g., `{'http': 'foo.bar:3128',
|
185 |
+
'http://hostname': 'foo.bar:4012'}`. The proxies are used on each request.
|
186 |
+
local_files_only(`bool`, *optional*, defaults to `False`):
|
187 |
+
Whether or not to only look at local files (i.e., do not try to download the model).
|
188 |
+
token (`str` or `bool`, *optional*):
|
189 |
+
The token to use as HTTP bearer authorization for remote files. If `True`, or not specified, will use
|
190 |
+
the token generated when running `huggingface-cli login` (stored in `~/.huggingface`).
|
191 |
+
revision (`str`, *optional*, defaults to `"main"`):
|
192 |
+
The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a
|
193 |
+
git-based system for storing models and other artifacts on huggingface.co, so `revision` can be any
|
194 |
+
identifier allowed by git.
|
195 |
+
|
196 |
+
<Tip>
|
197 |
+
|
198 |
+
To test a pull request you made on the Hub, you can pass `revision="refs/pr/<pr_number>"`.
|
199 |
+
|
200 |
+
</Tip>
|
201 |
+
|
202 |
+
mirror (`str`, *optional*):
|
203 |
+
Mirror source to accelerate downloads in China. If you are from China and have an accessibility
|
204 |
+
problem, you can set this option to resolve it. Note that we do not guarantee the timeliness or safety.
|
205 |
+
Please refer to the mirror site for more information.
|
206 |
+
|
207 |
+
<Tip>
|
208 |
+
|
209 |
+
Activate the special ["offline-mode"](https://huggingface.co/transformers/installation.html#offline-mode) to
|
210 |
+
use this method in a firewalled environment.
|
211 |
+
|
212 |
+
</Tip>
|
213 |
+
|
214 |
+
Examples:
|
215 |
+
|
216 |
+
```python
|
217 |
+
>>> from transformers import Wav2Vec2ForCTC, AutoProcessor
|
218 |
+
|
219 |
+
>>> ckpt = "facebook/mms-1b-all"
|
220 |
+
>>> processor = AutoProcessor.from_pretrained(ckpt)
|
221 |
+
>>> model = Wav2Vec2ForCTC.from_pretrained(ckpt, target_lang="eng")
|
222 |
+
>>> # set specific language
|
223 |
+
>>> processor.tokenizer.set_target_lang("spa")
|
224 |
+
>>> model.load_adapter("spa")
|
225 |
+
```
|
226 |
+
"""
|
227 |
+
if self.config.adapter_attn_dim is None:
|
228 |
+
raise ValueError(f"Cannot load_adapter for {target_lang} if `config.adapter_attn_dim` is not defined.")
|
229 |
+
|
230 |
+
if target_lang == self.target_lang and not force_load:
|
231 |
+
logger.warning(f"Adapter weights are already set to {target_lang}.")
|
232 |
+
return
|
233 |
+
|
234 |
+
cache_dir = kwargs.pop("cache_dir", None)
|
235 |
+
force_download = kwargs.pop("force_download", False)
|
236 |
+
resume_download = kwargs.pop("resume_download", None)
|
237 |
+
proxies = kwargs.pop("proxies", None)
|
238 |
+
local_files_only = kwargs.pop("local_files_only", False)
|
239 |
+
token = kwargs.pop("token", None)
|
240 |
+
use_auth_token = kwargs.pop("use_auth_token", None)
|
241 |
+
revision = kwargs.pop("revision", None)
|
242 |
+
use_safetensors = kwargs.pop("use_safetensors", None if is_safetensors_available() else False)
|
243 |
+
|
244 |
+
if use_auth_token is not None:
|
245 |
+
warnings.warn(
|
246 |
+
"The `use_auth_token` argument is deprecated and will be removed in v5 of Transformers. Please use `token` instead.",
|
247 |
+
FutureWarning,
|
248 |
+
)
|
249 |
+
if token is not None:
|
250 |
+
raise ValueError(
|
251 |
+
"`token` and `use_auth_token` are both specified. Please set only the argument `token`."
|
252 |
+
)
|
253 |
+
token = use_auth_token
|
254 |
+
|
255 |
+
model_path_or_id = self.config._name_or_path
|
256 |
+
state_dict = None
|
257 |
+
|
258 |
+
# 1. Let's first try loading a safetensors adapter weight
|
259 |
+
if use_safetensors is not False:
|
260 |
+
filepath = WAV2VEC2_ADAPTER_SAFE_FILE.format(target_lang)
|
261 |
+
|
262 |
+
try:
|
263 |
+
weight_path = cached_file(
|
264 |
+
model_path_or_id,
|
265 |
+
filename=filepath,
|
266 |
+
force_download=force_download,
|
267 |
+
resume_download=resume_download,
|
268 |
+
proxies=proxies,
|
269 |
+
local_files_only=local_files_only,
|
270 |
+
token=token,
|
271 |
+
revision=revision,
|
272 |
+
cache_dir=cache_dir,
|
273 |
+
)
|
274 |
+
|
275 |
+
state_dict = safe_load_file(weight_path)
|
276 |
+
|
277 |
+
except EnvironmentError:
|
278 |
+
if use_safetensors:
|
279 |
+
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted
|
280 |
+
# to the original exception.
|
281 |
+
raise
|
282 |
+
|
283 |
+
except Exception:
|
284 |
+
# For any other exception, we throw a generic error.
|
285 |
+
if use_safetensors:
|
286 |
+
raise EnvironmentError(
|
287 |
+
f"Can't load the model for '{model_path_or_id}'. If you were trying to load it"
|
288 |
+
" from 'https://huggingface.co/models', make sure you don't have a local directory with the"
|
289 |
+
f" same name. Otherwise, make sure '{model_path_or_id}' is the correct path to a"
|
290 |
+
f" directory containing a file named {filepath}."
|
291 |
+
)
|
292 |
+
|
293 |
+
# 2. If this didn't work let's try loading a PyTorch adapter weight
|
294 |
+
if state_dict is None:
|
295 |
+
filepath = WAV2VEC2_ADAPTER_PT_FILE.format(target_lang)
|
296 |
+
|
297 |
+
try:
|
298 |
+
weight_path = cached_file(
|
299 |
+
model_path_or_id,
|
300 |
+
filename=filepath,
|
301 |
+
force_download=force_download,
|
302 |
+
resume_download=resume_download,
|
303 |
+
proxies=proxies,
|
304 |
+
local_files_only=local_files_only,
|
305 |
+
token=token,
|
306 |
+
revision=revision,
|
307 |
+
cache_dir=cache_dir,
|
308 |
+
)
|
309 |
+
|
310 |
+
weights_only_kwarg = {"weights_only": True} if is_torch_greater_or_equal_than_1_13 else {}
|
311 |
+
state_dict = torch.load(
|
312 |
+
weight_path,
|
313 |
+
map_location="cpu",
|
314 |
+
**weights_only_kwarg,
|
315 |
+
)
|
316 |
+
|
317 |
+
except EnvironmentError:
|
318 |
+
# Raise any environment error raise by `cached_file`. It will have a helpful error message adapted
|
319 |
+
# to the original exception.
|
320 |
+
raise
|
321 |
+
|
322 |
+
except Exception:
|
323 |
+
# For any other exception, we throw a generic error.
|
324 |
+
raise EnvironmentError(
|
325 |
+
f"Can't load the model for '{model_path_or_id}'. If you were trying to load it"
|
326 |
+
" from 'https://huggingface.co/models', make sure you don't have a local directory with the"
|
327 |
+
f" same name. Otherwise, make sure '{model_path_or_id}' is the correct path to a"
|
328 |
+
f" directory containing a file named {filepath}."
|
329 |
+
)
|
330 |
+
|
331 |
+
adapter_weights = self._get_adapters()
|
332 |
+
unexpected_keys = set(state_dict.keys()) - set(adapter_weights.keys())
|
333 |
+
missing_keys = set(adapter_weights.keys()) - set(state_dict.keys())
|
334 |
+
|
335 |
+
if len(unexpected_keys) > 0:
|
336 |
+
raise ValueError(f"The adapter weights {weight_path} has unexpected keys: {', '.join(unexpected_keys)}.")
|
337 |
+
elif len(missing_keys) > 0:
|
338 |
+
raise ValueError(f"The adapter weights {weight_path} has missing keys: {', '.join(missing_keys)}.")
|
339 |
+
|
340 |
+
# make sure now vocab size is correct
|
341 |
+
target_vocab_size = state_dict["lm_head.weight"].shape[0]
|
342 |
+
if target_vocab_size != self.config.vocab_size:
|
343 |
+
self.lm_head = nn.Linear(
|
344 |
+
self.config.output_hidden_size, target_vocab_size, device=self.device, dtype=self.dtype
|
345 |
+
)
|
346 |
+
self.config.vocab_size = target_vocab_size
|
347 |
+
|
348 |
+
# make sure that adapter weights are put in exactly the same precision and device placement and overwritten adapter weights
|
349 |
+
state_dict = {k: v.to(adapter_weights[k]) for k, v in state_dict.items()}
|
350 |
+
self.load_state_dict(state_dict, strict=False)
|
351 |
+
|
352 |
+
# set target language corectly
|
353 |
+
self.target_lang = target_lang
|
354 |
+
|
355 |
+
|
356 |
+
class Wav2Vec2SpkRegModel(Wav2Vec2SpkRegPreTrainedModel):
|
357 |
+
|
358 |
+
def __init__(self, config: Wav2Vec2SpkRegConfig):
|
359 |
+
super().__init__(config)
|
360 |
+
self.config = config
|
361 |
+
self.feature_extractor = Wav2Vec2FeatureEncoder(config)
|
362 |
+
self.feature_projection = Wav2Vec2FeatureProjection(config)
|
363 |
+
|
364 |
+
# model only needs masking vector if mask prob is > 0.0
|
365 |
+
if config.mask_time_prob > 0.0 or config.mask_feature_prob > 0.0:
|
366 |
+
self.masked_spec_embed = nn.Parameter(torch.Tensor(config.hidden_size).uniform_())
|
367 |
+
|
368 |
+
if config.do_stable_layer_norm:
|
369 |
+
self.encoder = Wav2Vec2EncoderStableLayerNorm(config)
|
370 |
+
else:
|
371 |
+
self.encoder = Wav2Vec2Encoder(config)
|
372 |
+
|
373 |
+
self.adapter = Wav2Vec2Adapter(config) if config.add_adapter else None
|
374 |
+
|
375 |
+
# Initialize weights and apply final processing
|
376 |
+
self.post_init()
|
377 |
+
|
378 |
+
def freeze_feature_extractor(self):
|
379 |
+
"""
|
380 |
+
Calling this function will disable the gradient computation for the feature encoder so that its parameters will
|
381 |
+
not be updated during training.
|
382 |
+
"""
|
383 |
+
warnings.warn(
|
384 |
+
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
|
385 |
+
"Please use the equivalent `freeze_feature_encoder` method instead.",
|
386 |
+
FutureWarning,
|
387 |
+
)
|
388 |
+
self.freeze_feature_encoder()
|
389 |
+
|
390 |
+
def freeze_feature_encoder(self):
|
391 |
+
"""
|
392 |
+
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
393 |
+
not be updated during training.
|
394 |
+
"""
|
395 |
+
self.feature_extractor._freeze_parameters()
|
396 |
+
|
397 |
+
def _mask_hidden_states(
|
398 |
+
self,
|
399 |
+
hidden_states: torch.FloatTensor,
|
400 |
+
mask_time_indices: Optional[torch.FloatTensor] = None,
|
401 |
+
attention_mask: Optional[torch.LongTensor] = None,
|
402 |
+
):
|
403 |
+
"""
|
404 |
+
Masks extracted features along time axis and/or along feature axis according to
|
405 |
+
[SpecAugment](https://arxiv.org/abs/1904.08779).
|
406 |
+
"""
|
407 |
+
|
408 |
+
# `config.apply_spec_augment` can set masking to False
|
409 |
+
if not getattr(self.config, "apply_spec_augment", True):
|
410 |
+
return hidden_states
|
411 |
+
|
412 |
+
# generate indices & apply SpecAugment along time axis
|
413 |
+
batch_size, sequence_length, hidden_size = hidden_states.size()
|
414 |
+
|
415 |
+
if mask_time_indices is not None:
|
416 |
+
# apply SpecAugment along time axis with given mask_time_indices
|
417 |
+
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
|
418 |
+
elif self.config.mask_time_prob > 0 and self.training:
|
419 |
+
mask_time_indices = _compute_mask_indices(
|
420 |
+
(batch_size, sequence_length),
|
421 |
+
mask_prob=self.config.mask_time_prob,
|
422 |
+
mask_length=self.config.mask_time_length,
|
423 |
+
attention_mask=attention_mask,
|
424 |
+
min_masks=self.config.mask_time_min_masks,
|
425 |
+
)
|
426 |
+
mask_time_indices = torch.tensor(mask_time_indices, device=hidden_states.device, dtype=torch.bool)
|
427 |
+
hidden_states[mask_time_indices] = self.masked_spec_embed.to(hidden_states.dtype)
|
428 |
+
|
429 |
+
if self.config.mask_feature_prob > 0 and self.training:
|
430 |
+
# generate indices & apply SpecAugment along feature axis
|
431 |
+
mask_feature_indices = _compute_mask_indices(
|
432 |
+
(batch_size, hidden_size),
|
433 |
+
mask_prob=self.config.mask_feature_prob,
|
434 |
+
mask_length=self.config.mask_feature_length,
|
435 |
+
min_masks=self.config.mask_feature_min_masks,
|
436 |
+
)
|
437 |
+
mask_feature_indices = torch.tensor(mask_feature_indices, device=hidden_states.device, dtype=torch.bool)
|
438 |
+
mask_feature_indices = mask_feature_indices[:, None].expand(-1, sequence_length, -1)
|
439 |
+
hidden_states[mask_feature_indices] = 0
|
440 |
+
|
441 |
+
return hidden_states
|
442 |
+
|
443 |
+
def forward(
|
444 |
+
self,
|
445 |
+
input_values: Optional[torch.Tensor],
|
446 |
+
attention_mask: Optional[torch.Tensor] = None,
|
447 |
+
mask_time_indices: Optional[torch.FloatTensor] = None,
|
448 |
+
output_attentions: Optional[bool] = None,
|
449 |
+
output_hidden_states: Optional[bool] = None,
|
450 |
+
return_dict: Optional[bool] = None,
|
451 |
+
) -> Union[Tuple, Wav2Vec2BaseModelOutput]:
|
452 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
453 |
+
output_hidden_states = (
|
454 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
455 |
+
)
|
456 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
457 |
+
|
458 |
+
extract_features = self.feature_extractor(input_values)
|
459 |
+
extract_features = extract_features.transpose(1, 2)
|
460 |
+
|
461 |
+
if attention_mask is not None:
|
462 |
+
# compute reduced attention_mask corresponding to feature vectors
|
463 |
+
attention_mask = self._get_feature_vector_attention_mask(
|
464 |
+
extract_features.shape[1], attention_mask, add_adapter=False
|
465 |
+
)
|
466 |
+
|
467 |
+
hidden_states, extract_features = self.feature_projection(extract_features)
|
468 |
+
hidden_states = self._mask_hidden_states(
|
469 |
+
hidden_states, mask_time_indices=mask_time_indices, attention_mask=attention_mask
|
470 |
+
)
|
471 |
+
|
472 |
+
encoder_outputs = self.encoder(
|
473 |
+
hidden_states,
|
474 |
+
attention_mask=attention_mask,
|
475 |
+
output_attentions=output_attentions,
|
476 |
+
output_hidden_states=output_hidden_states,
|
477 |
+
return_dict=return_dict,
|
478 |
+
)
|
479 |
+
|
480 |
+
hidden_states = encoder_outputs[0]
|
481 |
+
|
482 |
+
if self.adapter is not None:
|
483 |
+
hidden_states = self.adapter(hidden_states)
|
484 |
+
|
485 |
+
if not return_dict:
|
486 |
+
return (hidden_states, extract_features) + encoder_outputs[1:]
|
487 |
+
|
488 |
+
return Wav2Vec2BaseModelOutput(
|
489 |
+
last_hidden_state=hidden_states,
|
490 |
+
extract_features=extract_features,
|
491 |
+
hidden_states=encoder_outputs.hidden_states,
|
492 |
+
attentions=encoder_outputs.attentions,
|
493 |
+
)
|
494 |
+
|
495 |
+
|
496 |
+
class AngularLinear(nn.Module):
|
497 |
+
|
498 |
+
def __init__(self, in_features: int, out_features: int):
|
499 |
+
super(AngularLinear, self).__init__()
|
500 |
+
self.in_features = in_features
|
501 |
+
self.out_features = out_features
|
502 |
+
self.weight = torch.nn.Parameter(
|
503 |
+
torch.FloatTensor(out_features, in_features), requires_grad=True
|
504 |
+
)
|
505 |
+
nn.init.xavier_normal_(self.weight, gain=1)
|
506 |
+
|
507 |
+
def forward(
|
508 |
+
self,
|
509 |
+
inputs: torch.Tensor,
|
510 |
+
):
|
511 |
+
# Calculation of cos(theta)
|
512 |
+
cosine = F.linear(F.normalize(inputs), F.normalize(self.weight))
|
513 |
+
return cosine
|
514 |
+
|
515 |
+
def extra_repr(self) -> str:
|
516 |
+
return 'in_features={}, out_features={}'.format(
|
517 |
+
self.in_features, self.out_features
|
518 |
+
)
|
519 |
+
|
520 |
+
|
521 |
+
class AMSoftmaxLoss(nn.Module):
|
522 |
+
"""Additive Margin Softmax
|
523 |
+
|
524 |
+
Paper: Wang, Feng, et al. "Additive margin softmax for face verification."
|
525 |
+
IEEE Signal Processing Letters 25.7 (2018): 926-930.
|
526 |
+
"""
|
527 |
+
def __init__(
|
528 |
+
self,
|
529 |
+
num_labels: int,
|
530 |
+
scale: float = 30.0,
|
531 |
+
margin: float = 0.35,
|
532 |
+
):
|
533 |
+
"""
|
534 |
+
Args:
|
535 |
+
num_classes: Number of classes (output dimension)
|
536 |
+
scale: Scaling factor for logits (default: 30.0)
|
537 |
+
margin: Angular margin (default: 0.35)
|
538 |
+
"""
|
539 |
+
super(AMSoftmaxLoss, self).__init__()
|
540 |
+
self.num_labels = num_labels
|
541 |
+
self.scale = scale
|
542 |
+
self.margin = margin
|
543 |
+
|
544 |
+
def forward(
|
545 |
+
self,
|
546 |
+
inputs: torch.Tensor,
|
547 |
+
targets: torch.Tensor,
|
548 |
+
label_smoothing: float = 0.0,
|
549 |
+
reduction: str = "mean"
|
550 |
+
):
|
551 |
+
"""
|
552 |
+
Args:
|
553 |
+
inputs: Input features of shape (batch_size, num_labels)
|
554 |
+
targets: Ground truth labels of shape (batch_size)
|
555 |
+
label_smoothing: Label smoothing factor (default: 0.0)
|
556 |
+
reduction: Reduction method (default: "mean")
|
557 |
+
Returns:
|
558 |
+
Loss value
|
559 |
+
"""
|
560 |
+
# `inputs` are the outputs from AngularLinear()
|
561 |
+
cosine = inputs
|
562 |
+
psi = cosine - self.margin
|
563 |
+
one_hot = nn.functional.one_hot(targets, self.num_labels)
|
564 |
+
outputs = self.scale * torch.where(one_hot.bool(), psi, cosine)
|
565 |
+
loss = F.cross_entropy(outputs, targets, label_smoothing=label_smoothing, reduction=reduction)
|
566 |
+
return loss
|
567 |
+
|
568 |
+
|
569 |
+
class AAMSoftmaxLoss(nn.Module):
|
570 |
+
"""Additive Angular Margin Softmax.
|
571 |
+
|
572 |
+
Paper: Deng, Jiankang, et al. "Arcface: Additive angular margin loss for deep face recognition."
|
573 |
+
Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 2019.
|
574 |
+
"""
|
575 |
+
def __init__(
|
576 |
+
self,
|
577 |
+
num_labels: int,
|
578 |
+
scale: float = 30.0,
|
579 |
+
margin: float = 0.35,
|
580 |
+
easy_margin: bool = False
|
581 |
+
):
|
582 |
+
"""
|
583 |
+
Args:
|
584 |
+
num_classes: Number of classes (output dimension)
|
585 |
+
scale: Scaling factor for logits (default: 30.0)
|
586 |
+
margin: Angular margin (default: 0.35)
|
587 |
+
easy_margin: Use the easy margin loss (default: False)
|
588 |
+
"""
|
589 |
+
super(AAMSoftmaxLoss, self).__init__()
|
590 |
+
self.num_labels = num_labels
|
591 |
+
self.scale = scale
|
592 |
+
self.margin = margin
|
593 |
+
self.easy_margin = easy_margin
|
594 |
+
|
595 |
+
def forward(
|
596 |
+
self,
|
597 |
+
inputs: torch.Tensor,
|
598 |
+
targets: torch.Tensor,
|
599 |
+
label_smoothing: float = 0.0,
|
600 |
+
reduction: str = "mean"
|
601 |
+
):
|
602 |
+
"""
|
603 |
+
Args:
|
604 |
+
inputs: Input features of shape (batch_size, num_labels)
|
605 |
+
targets: Ground truth labels of shape (batch_size)
|
606 |
+
label_smoothing: Label smoothing factor (default: 0.0)
|
607 |
+
reduction: Reduction method (default: "mean")
|
608 |
+
Returns:
|
609 |
+
Loss value
|
610 |
+
"""
|
611 |
+
# Calculation of cos(theta + m) where inputs are the outputs from AngularLinear()
|
612 |
+
cosine = inputs
|
613 |
+
sine = torch.sqrt((1.0 - torch.mul(cosine, cosine)).clamp(0, 1))
|
614 |
+
phi = cosine * math.cos(self.margin) - sine * math.sin(self.margin)
|
615 |
+
|
616 |
+
# make the function cos(theta+m) monotonic decreasing while theta in [0°,180°]
|
617 |
+
th = math.cos(math.pi - self.margin)
|
618 |
+
mm = math.sin(math.pi - self.margin) * self.margin
|
619 |
+
|
620 |
+
if self.easy_margin:
|
621 |
+
phi = torch.where(cosine > 0, phi, cosine)
|
622 |
+
else:
|
623 |
+
phi = torch.where((cosine - th) > 0, phi, cosine - mm)
|
624 |
+
|
625 |
+
one_hot = torch.zeros_like(cosine)
|
626 |
+
one_hot.scatter_(1, targets.view(-1, 1), 1)
|
627 |
+
outputs = (one_hot * phi) + ((1.0 - one_hot) * cosine)
|
628 |
+
outputs = outputs * self.scale
|
629 |
+
|
630 |
+
loss = F.cross_entropy(outputs, targets, label_smoothing=label_smoothing, reduction=reduction)
|
631 |
+
return loss
|
632 |
+
|
633 |
+
|
634 |
+
class Wav2Vec2SpkRegForSequenceClassification(Wav2Vec2SpkRegPreTrainedModel):
|
635 |
+
|
636 |
+
def __init__(self, config):
|
637 |
+
super().__init__(config)
|
638 |
+
|
639 |
+
if hasattr(config, "add_adapter") and config.add_adapter:
|
640 |
+
raise ValueError(
|
641 |
+
"Sequence classification does not support the use of Wav2Vec2 adapters (config.add_adapter=True)"
|
642 |
+
)
|
643 |
+
self.wav2vec2 = Wav2Vec2SpkRegModel(config)
|
644 |
+
num_layers = config.num_hidden_layers + 1 # transformer layers + input embeddings
|
645 |
+
if config.use_weighted_layer_sum:
|
646 |
+
self.layer_weights = nn.Parameter(torch.ones(num_layers) / num_layers)
|
647 |
+
self.projector = nn.Linear(config.hidden_size, config.classifier_proj_size)
|
648 |
+
|
649 |
+
if self.config.loss_fct == 'cross_entropy':
|
650 |
+
self.classifier = nn.Linear(config.classifier_proj_size, config.num_labels)
|
651 |
+
elif self.config.loss_fct == 'additive_margin':
|
652 |
+
self.classifier = AngularLinear(config.classifier_proj_size, config.num_labels)
|
653 |
+
elif self.config.loss_fct == 'additive_margin':
|
654 |
+
self.classifier = AngularLinear(config.classifier_proj_size, config.num_labels)
|
655 |
+
else:
|
656 |
+
raise ValueError(f"Unsupported loss function: {self.config.loss_fct}")
|
657 |
+
|
658 |
+
# Initialize weights and apply final processing
|
659 |
+
self.post_init()
|
660 |
+
|
661 |
+
def freeze_feature_extractor(self):
|
662 |
+
"""
|
663 |
+
Calling this function will disable the gradient computation for the feature encoder so that its parameters will
|
664 |
+
not be updated during training.
|
665 |
+
"""
|
666 |
+
warnings.warn(
|
667 |
+
"The method `freeze_feature_extractor` is deprecated and will be removed in Transformers v5. "
|
668 |
+
"Please use the equivalent `freeze_feature_encoder` method instead.",
|
669 |
+
FutureWarning,
|
670 |
+
)
|
671 |
+
self.freeze_feature_encoder()
|
672 |
+
|
673 |
+
def freeze_feature_encoder(self):
|
674 |
+
"""
|
675 |
+
Calling this function will disable the gradient computation for the feature encoder so that its parameter will
|
676 |
+
not be updated during training.
|
677 |
+
"""
|
678 |
+
self.wav2vec2.feature_extractor._freeze_parameters()
|
679 |
+
|
680 |
+
def freeze_base_model(self):
|
681 |
+
"""
|
682 |
+
Calling this function will disable the gradient computation for the base model so that its parameters will not
|
683 |
+
be updated during training. Only the classification head will be updated.
|
684 |
+
"""
|
685 |
+
for param in self.wav2vec2.parameters():
|
686 |
+
param.requires_grad = False
|
687 |
+
|
688 |
+
def forward(
|
689 |
+
self,
|
690 |
+
input_values: Optional[torch.Tensor],
|
691 |
+
attention_mask: Optional[torch.Tensor] = None,
|
692 |
+
output_attentions: Optional[bool] = None,
|
693 |
+
output_hidden_states: Optional[bool] = None,
|
694 |
+
return_dict: Optional[bool] = None,
|
695 |
+
labels: Optional[torch.Tensor] = None,
|
696 |
+
) -> Union[Tuple, SequenceClassifierOutput]:
|
697 |
+
r"""
|
698 |
+
labels (`torch.LongTensor` of shape `(batch_size,)`, *optional*):
|
699 |
+
Labels for computing the sequence classification/regression loss. Indices should be in `[0, ...,
|
700 |
+
config.num_labels - 1]`. If `config.num_labels == 1` a regression loss is computed (Mean-Square loss), If
|
701 |
+
`config.num_labels > 1` a classification loss is computed (Cross-Entropy).
|
702 |
+
"""
|
703 |
+
|
704 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
705 |
+
output_hidden_states = True if self.config.use_weighted_layer_sum else output_hidden_states
|
706 |
+
|
707 |
+
outputs = self.wav2vec2(
|
708 |
+
input_values,
|
709 |
+
attention_mask=attention_mask,
|
710 |
+
output_attentions=output_attentions,
|
711 |
+
output_hidden_states=output_hidden_states,
|
712 |
+
return_dict=return_dict,
|
713 |
+
)
|
714 |
+
|
715 |
+
if self.config.use_weighted_layer_sum:
|
716 |
+
hidden_states = outputs[_HIDDEN_STATES_START_POSITION]
|
717 |
+
hidden_states = torch.stack(hidden_states, dim=1)
|
718 |
+
norm_weights = nn.functional.softmax(self.layer_weights, dim=-1)
|
719 |
+
hidden_states = (hidden_states * norm_weights.view(-1, 1, 1)).sum(dim=1)
|
720 |
+
else:
|
721 |
+
hidden_states = outputs[0]
|
722 |
+
|
723 |
+
hidden_states = self.projector(hidden_states)
|
724 |
+
if attention_mask is None:
|
725 |
+
pooled_output = hidden_states.mean(dim=1)
|
726 |
+
else:
|
727 |
+
padding_mask = self._get_feature_vector_attention_mask(hidden_states.shape[1], attention_mask)
|
728 |
+
hidden_states[~padding_mask] = 0.0
|
729 |
+
pooled_output = hidden_states.sum(dim=1) / padding_mask.sum(dim=1).view(-1, 1)
|
730 |
+
|
731 |
+
logits = self.classifier(pooled_output)
|
732 |
+
|
733 |
+
loss = None
|
734 |
+
if labels is not None:
|
735 |
+
if self.loss_fct == 'cross_entropy':
|
736 |
+
loss_fct = nn.CrossEntropyLoss(
|
737 |
+
label_smoothing=self.config.label_smoothing,
|
738 |
+
reduction=self.config.reduction
|
739 |
+
)
|
740 |
+
elif self.loss_fct == 'additive_margin':
|
741 |
+
loss_fct = AMSoftmaxLoss(
|
742 |
+
self.config.num_labels, self.config.scale, self.config.margin
|
743 |
+
)
|
744 |
+
elif self.loss_fct == 'additive_angular_margin':
|
745 |
+
loss_fct = AAMSoftmaxLoss(
|
746 |
+
self.config.num_labels, self.config.scale, self.config.margin, self.config.easy_margin
|
747 |
+
)
|
748 |
+
loss = loss_fct(
|
749 |
+
logits.view(-1, self.config.num_labels),
|
750 |
+
labels.view(-1),
|
751 |
+
label_smoothing=self.config.label_smoothing,
|
752 |
+
reduction=self.config.reduction
|
753 |
+
)
|
754 |
+
|
755 |
+
if not return_dict:
|
756 |
+
output = (logits,) + outputs[_HIDDEN_STATES_START_POSITION:]
|
757 |
+
return ((loss,) + output) if loss is not None else output
|
758 |
+
|
759 |
+
return SequenceClassifierOutput(
|
760 |
+
loss=loss,
|
761 |
+
logits=logits,
|
762 |
+
hidden_states=outputs.hidden_states,
|
763 |
+
attentions=outputs.attentions,
|
764 |
+
)
|