Upload folder using huggingface_hub
Browse files- .gitattributes +2 -0
- README.md +258 -0
- chat_template.jinja +150 -0
- config.json +662 -0
- generation_config.json +11 -0
- get_size.py +14 -0
- images/README +1 -0
- images/cogito-v2-109b-benchmarks.png +3 -0
- images/deep-cogito-logo.png +0 -0
- model-00001-of-00014.safetensors +3 -0
- model-00002-of-00014.safetensors +3 -0
- model-00003-of-00014.safetensors +3 -0
- model-00004-of-00014.safetensors +3 -0
- model-00005-of-00014.safetensors +3 -0
- model-00006-of-00014.safetensors +3 -0
- model-00007-of-00014.safetensors +3 -0
- model-00008-of-00014.safetensors +3 -0
- model-00009-of-00014.safetensors +3 -0
- model-00010-of-00014.safetensors +3 -0
- model-00011-of-00014.safetensors +3 -0
- model-00012-of-00014.safetensors +3 -0
- model-00013-of-00014.safetensors +3 -0
- model-00014-of-00014.safetensors +3 -0
- model.safetensors.index.json +0 -0
- preprocessor_config.json +34 -0
- processor_config.json +6 -0
- recipe.yaml +11 -0
- special_tokens_map.json +23 -0
- tokenizer.json +3 -0
- tokenizer_config.json +0 -0
.gitattributes
CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
36 |
+
images/cogito-v2-109b-benchmarks.png filter=lfs diff=lfs merge=lfs -text
|
37 |
+
tokenizer.json filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,258 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: llama4
|
3 |
+
library_name: transformers
|
4 |
+
base_model:
|
5 |
+
- meta-llama/Llama-4-Scout-17B-16E
|
6 |
+
---
|
7 |
+
|
8 |
+
<p align="center">
|
9 |
+
<img src="images/deep-cogito-logo.png" alt="Logo" width="40%">
|
10 |
+
</p>
|
11 |
+
|
12 |
+
|
13 |
+
# Cogito v2 preview - 109B MoE
|
14 |
+
|
15 |
+
[Blog Post](https://www.deepcogito.com/research/cogito-v2-preview)
|
16 |
+
|
17 |
+
The Cogito v2 LLMs are instruction tuned generative models. All models are released under an open license for commercial use.
|
18 |
+
|
19 |
+
- Cogito v2 models are hybrid reasoning models. Each model can answer directly (standard LLM), or self-reflect before answering (like reasoning models).
|
20 |
+
- The LLMs are trained using **Iterated Distillation and Amplification (IDA)** - an scalable and efficient alignment strategy for superintelligence using iterative self-improvement.
|
21 |
+
- The models have been optimized for coding, STEM, instruction following and general helpfulness, and have significantly higher multilingual, coding and tool calling capabilities than size equivalent counterparts.
|
22 |
+
- In both standard and reasoning modes, Cogito v2-preview models outperform their size equivalent counterparts on common industry benchmarks.
|
23 |
+
- This model is trained in over 30 languages and supports long contexts (upto 10M tokens).
|
24 |
+
|
25 |
+
# Evaluations
|
26 |
+
Here is the model performance on some standard industry benchmarks:
|
27 |
+
|
28 |
+
<p align="left">
|
29 |
+
<img src="images/cogito-v2-109b-benchmarks.png" alt="Logo" width="90%">
|
30 |
+
</p>
|
31 |
+
|
32 |
+
For detailed evaluations, please refer to the [Blog Post](https://www.deepcogito.com/research/cogito-v2-preview).
|
33 |
+
|
34 |
+
# Usage
|
35 |
+
Here is a snippet below for usage with Transformers:
|
36 |
+
|
37 |
+
```python
|
38 |
+
import transformers
|
39 |
+
import torch
|
40 |
+
|
41 |
+
model_id = "deepcogito/cogito-v2-preview-llama-109B-MoE"
|
42 |
+
|
43 |
+
pipeline = transformers.pipeline(
|
44 |
+
"text-generation",
|
45 |
+
model=model_id,
|
46 |
+
model_kwargs={"torch_dtype": torch.bfloat16},
|
47 |
+
device_map="auto",
|
48 |
+
)
|
49 |
+
|
50 |
+
messages = [
|
51 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
52 |
+
{"role": "user", "content": "Give me a short introduction to LLMs."},
|
53 |
+
]
|
54 |
+
|
55 |
+
outputs = pipeline(
|
56 |
+
messages,
|
57 |
+
max_new_tokens=512,
|
58 |
+
)
|
59 |
+
|
60 |
+
print(outputs[0]["generated_text"][-1])
|
61 |
+
```
|
62 |
+
|
63 |
+
|
64 |
+
|
65 |
+
## Implementing extended thinking
|
66 |
+
- By default, the model will answer in the standard mode.
|
67 |
+
- To enable thinking, you can do any one of the two methods:
|
68 |
+
- Set `enable_thinking=True` while applying the chat template.
|
69 |
+
- Add a specific system prompt, along with prefilling the response with "\<think\>\n".
|
70 |
+
|
71 |
+
**NOTE: Unlike Cogito v1 models, we initiate the response with "\<think\>\n" at the beginning of every output when reasoning is enabled. This is because hybrid models can be brittle at times (<0.1% of the cases), and adding a "\<think\>\n" ensures that the model does indeed respect thinking.**
|
72 |
+
|
73 |
+
### Method 1 - Set enable_thinking=True in the tokenizer
|
74 |
+
If you are using Huggingface tokenizers, then you can simply use add the argument `enable_thinking=True` to the tokenization (this option is added to the chat template).
|
75 |
+
|
76 |
+
Here is an example -
|
77 |
+
```python
|
78 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
79 |
+
|
80 |
+
model_name = "deepcogito/cogito-v2-preview-llama-109B-MoE"
|
81 |
+
|
82 |
+
model = AutoModelForCausalLM.from_pretrained(
|
83 |
+
model_name,
|
84 |
+
torch_dtype="auto",
|
85 |
+
device_map="auto"
|
86 |
+
)
|
87 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
88 |
+
|
89 |
+
prompt = "Give me a short introduction to LLMs."
|
90 |
+
messages = [
|
91 |
+
{"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
|
92 |
+
{"role": "user", "content": prompt}
|
93 |
+
]
|
94 |
+
|
95 |
+
text = tokenizer.apply_chat_template(
|
96 |
+
messages,
|
97 |
+
tokenize=False,
|
98 |
+
add_generation_prompt=True,
|
99 |
+
enable_thinking=True
|
100 |
+
)
|
101 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
102 |
+
|
103 |
+
generated_ids = model.generate(
|
104 |
+
**model_inputs,
|
105 |
+
max_new_tokens=512
|
106 |
+
)
|
107 |
+
generated_ids = [
|
108 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
109 |
+
]
|
110 |
+
|
111 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
112 |
+
print(response)
|
113 |
+
```
|
114 |
+
|
115 |
+
### Method 2 - Add a specific system prompt, along with prefilling the response with "\<think\>\n".
|
116 |
+
To enable thinking using this method, you need to do two parts -
|
117 |
+
|
118 |
+
|
119 |
+
Step 1 - Simply use this in the system prompt `system_instruction = 'Enable deep thinking subroutine.'`
|
120 |
+
|
121 |
+
If you already have a system_instruction, then use `system_instruction = 'Enable deep thinking subroutine.' + '\n\n' + system_instruction`.
|
122 |
+
|
123 |
+
Step 2 - Prefil the response with the tokens `"<think>\n"`.
|
124 |
+
|
125 |
+
Here is an example -
|
126 |
+
|
127 |
+
```python
|
128 |
+
import transformers
|
129 |
+
import torch
|
130 |
+
|
131 |
+
model_name = "deepcogito/cogito-v2-preview-llama-109B-MoE"
|
132 |
+
|
133 |
+
model = AutoModelForCausalLM.from_pretrained(
|
134 |
+
model_name,
|
135 |
+
torch_dtype="auto",
|
136 |
+
device_map="auto"
|
137 |
+
)
|
138 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
139 |
+
|
140 |
+
# Step 1 - Add deep thinking instruction.
|
141 |
+
DEEP_THINKING_INSTRUCTION = "Enable deep thinking subroutine."
|
142 |
+
|
143 |
+
messages = [
|
144 |
+
{"role": "system", "content": DEEP_THINKING_INSTRUCTION},
|
145 |
+
{"role": "user", "content": "Write a bash script that takes a matrix represented as a string with format '[1,2],[3,4],[5,6]' and prints the transpose in the same format."},
|
146 |
+
]
|
147 |
+
|
148 |
+
text = tokenizer.apply_chat_template(
|
149 |
+
messages,
|
150 |
+
tokenize=False,
|
151 |
+
add_generation_prompt=True
|
152 |
+
)
|
153 |
+
|
154 |
+
# Step 2 - Prefill response with "<think>\n".
|
155 |
+
text += "<think>\n"
|
156 |
+
|
157 |
+
# Now, continue as usual.
|
158 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
159 |
+
|
160 |
+
generated_ids = model.generate(
|
161 |
+
**model_inputs,
|
162 |
+
max_new_tokens=512
|
163 |
+
)
|
164 |
+
generated_ids = [
|
165 |
+
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
|
166 |
+
]
|
167 |
+
|
168 |
+
response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
|
169 |
+
print(response)
|
170 |
+
```
|
171 |
+
|
172 |
+
|
173 |
+
Similarly, if you have a system prompt, you can append the `DEEP_THINKING_INSTRUCTION` to the beginning in this way -
|
174 |
+
|
175 |
+
```python
|
176 |
+
DEEP_THINKING_INSTRUCTION = "Enable deep thinking subroutine."
|
177 |
+
|
178 |
+
system_prompt = "Reply to each prompt with only the actual code - no explanations."
|
179 |
+
prompt = "Write a bash script that takes a matrix represented as a string with format '[1,2],[3,4],[5,6]' and prints the transpose in the same format."
|
180 |
+
|
181 |
+
messages = [
|
182 |
+
{"role": "system", "content": DEEP_THINKING_INSTRUCTION + '\n\n' + system_prompt},
|
183 |
+
{"role": "user", "content": prompt}
|
184 |
+
]
|
185 |
+
```
|
186 |
+
|
187 |
+
|
188 |
+
# Tool Calling
|
189 |
+
Cogito models support tool calling (single, parallel, multiple and parallel_multiple) both in standard and extended thinking mode.
|
190 |
+
|
191 |
+
Here is a snippet -
|
192 |
+
|
193 |
+
```python
|
194 |
+
# First, define a tool
|
195 |
+
def get_current_temperature(location: str) -> float:
|
196 |
+
"""
|
197 |
+
Get the current temperature at a location.
|
198 |
+
|
199 |
+
Args:
|
200 |
+
location: The location to get the temperature for, in the format "City, Country"
|
201 |
+
Returns:
|
202 |
+
The current temperature at the specified location in the specified units, as a float.
|
203 |
+
"""
|
204 |
+
return 22. # A real function should probably actually get the temperature!
|
205 |
+
|
206 |
+
# Next, create a chat and apply the chat template
|
207 |
+
messages = [
|
208 |
+
{"role": "user", "content": "Hey, what's the temperature in Paris right now?"}
|
209 |
+
]
|
210 |
+
|
211 |
+
model_inputs = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True)
|
212 |
+
|
213 |
+
text = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True, tokenize=False)
|
214 |
+
inputs = tokenizer(text, return_tensors="pt", add_special_tokens=False).to(model.device)
|
215 |
+
outputs = model.generate(**inputs, max_new_tokens=512)
|
216 |
+
output_text = tokenizer.batch_decode(outputs)[0][len(text):]
|
217 |
+
print(output_text)
|
218 |
+
```
|
219 |
+
|
220 |
+
This will result in the output -
|
221 |
+
```
|
222 |
+
<tool_call>
|
223 |
+
{"name": "get_current_temperature", "arguments": {"location": "Paris, France"}}
|
224 |
+
</tool_call><|eot|>
|
225 |
+
```
|
226 |
+
|
227 |
+
You can then generate text from this input as normal. If the model generates a tool call, you should add it to the chat like so:
|
228 |
+
|
229 |
+
```python
|
230 |
+
tool_call = {"name": "get_current_temperature", "arguments": {"location": "Paris, France"}}
|
231 |
+
messages.append({"role": "assistant", "tool_calls": [{"type": "function", "function": tool_call}]})
|
232 |
+
```
|
233 |
+
|
234 |
+
and then call the tool and append the result, with the `tool` role, like so:
|
235 |
+
|
236 |
+
```python
|
237 |
+
messages.append({"role": "tool", "name": "get_current_temperature", "content": "22.0"})
|
238 |
+
```
|
239 |
+
|
240 |
+
After that, you can `generate()` again to let the model use the tool result in the chat:
|
241 |
+
|
242 |
+
```python
|
243 |
+
text = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True, tokenize=False)
|
244 |
+
inputs = tokenizer(text, return_tensors="pt", add_special_tokens=False).to(model.device)
|
245 |
+
outputs = model.generate(**inputs, max_new_tokens=512)
|
246 |
+
output_text = tokenizer.batch_decode(outputs)[0][len(text):]
|
247 |
+
```
|
248 |
+
|
249 |
+
This should result in the string -
|
250 |
+
```
|
251 |
+
'The current temperature in Paris is 22.0 degrees.<|eot|>'
|
252 |
+
```
|
253 |
+
|
254 |
+
## License
|
255 |
+
This repository and the model weights are licensed under the [Llama 4 Community License Agreement](https://github.com/meta-llama/llama-models/blob/main/models/llama4/LICENSE) (Llama models' default license agreement).
|
256 |
+
|
257 |
+
## Contact
|
258 |
+
If you would like to reach out to our team, send an email to [[email protected]]([email protected]).
|
chat_template.jinja
ADDED
@@ -0,0 +1,150 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{{- bos_token }}
|
2 |
+
{%- if not tools is defined %}
|
3 |
+
{%- set tools = none %}
|
4 |
+
{%- endif %}
|
5 |
+
{%- if not enable_thinking is defined %}
|
6 |
+
{%- set enable_thinking = false %}
|
7 |
+
{%- endif %}
|
8 |
+
|
9 |
+
{#- This block extracts the system message, so we can slot it into the right place. #}
|
10 |
+
{%- if messages[0]['role'] == 'system' %}
|
11 |
+
{%- if messages[0]['content'] is string %}
|
12 |
+
{%- set system_message = messages[0]['content']|trim %}
|
13 |
+
{%- else %}
|
14 |
+
{%- set system_message = messages[0]['content'][0]['text']|trim %}
|
15 |
+
{%- endif %}
|
16 |
+
{%- set messages = messages[1:] %}
|
17 |
+
{%- else %}
|
18 |
+
{%- set system_message = "" %}
|
19 |
+
{%- endif %}
|
20 |
+
|
21 |
+
{#- Set the system message. If enable_thinking is true, add the "Enable deep thinking subroutine." #}
|
22 |
+
{%- if enable_thinking %}
|
23 |
+
{%- if system_message != "" %}
|
24 |
+
{%- set system_message = "Enable deep thinking subroutine.
|
25 |
+
|
26 |
+
" ~ system_message %}
|
27 |
+
{%- else %}
|
28 |
+
{%- set system_message = "Enable deep thinking subroutine." %}
|
29 |
+
{%- endif %}
|
30 |
+
{%- endif %}
|
31 |
+
|
32 |
+
{#- System message + tools #}
|
33 |
+
{%- if tools is not none or system_message != '' %}
|
34 |
+
{{- "<|header_start|>system<|header_end|>
|
35 |
+
|
36 |
+
" }}
|
37 |
+
{{- system_message }}
|
38 |
+
{%- if tools is not none %}
|
39 |
+
{%- if system_message != "" %}
|
40 |
+
{{- "
|
41 |
+
|
42 |
+
" }}
|
43 |
+
{%- endif %}
|
44 |
+
{{- "Available Tools:
|
45 |
+
" }}
|
46 |
+
{%- for t in tools %}
|
47 |
+
{{- t | tojson(indent=4) }}
|
48 |
+
{{- "
|
49 |
+
|
50 |
+
" }}
|
51 |
+
{%- endfor %}
|
52 |
+
{%- endif %}
|
53 |
+
{{- "<|eot|>" }}
|
54 |
+
{%- endif %}
|
55 |
+
|
56 |
+
{#- Rest of the messages #}
|
57 |
+
{%- for message in messages %}
|
58 |
+
{#- Case 1 - Usual, non tool related message. #}
|
59 |
+
{%- if not (message.role == "ipython" or message.role == "tool" or message.role == "tool_results" or (message.tool_calls is defined and message.tool_calls is not none)) %}
|
60 |
+
{{- '<|header_start|>' + message['role'] + '<|header_end|>
|
61 |
+
|
62 |
+
' }}
|
63 |
+
{%- if message['content'] is string %}
|
64 |
+
{{- message['content'] }}
|
65 |
+
{%- else %}
|
66 |
+
{%- for content in message['content'] %}
|
67 |
+
{%- if content['type'] == 'image' %}
|
68 |
+
{{- '<|image|>' }}
|
69 |
+
{%- elif content['type'] == 'text' %}
|
70 |
+
{{- content['text'] }}
|
71 |
+
{%- endif %}
|
72 |
+
{%- endfor %}
|
73 |
+
{%- endif %}
|
74 |
+
{{- "<|eot|>" }}
|
75 |
+
|
76 |
+
{#- Case 2 - the response is from the assistant, but has a tool call returned. #}
|
77 |
+
{%- elif message.tool_calls is defined and message.tool_calls is not none %}
|
78 |
+
{{- "<|header_start|>assistant<|header_end|>
|
79 |
+
|
80 |
+
" }}
|
81 |
+
{%- if message['content'] is string %}
|
82 |
+
{{- message['content'] }}
|
83 |
+
{%- if message['content'] | trim != "" %}
|
84 |
+
{{- "
|
85 |
+
|
86 |
+
" }}
|
87 |
+
{%- endif %}
|
88 |
+
{%- else %}
|
89 |
+
{%- for content in message['content'] %}
|
90 |
+
{%- if content['type'] == 'image' %}
|
91 |
+
{{- '<|image|>' }}
|
92 |
+
{%- elif content['type'] == 'text' %}
|
93 |
+
{{- content['text'] }}
|
94 |
+
{%- if content['text'] | trim != "" %}
|
95 |
+
{{- "
|
96 |
+
|
97 |
+
" }}
|
98 |
+
{%- endif %}
|
99 |
+
{%- endif %}
|
100 |
+
{%- endfor %}
|
101 |
+
{%- endif %}
|
102 |
+
{{- "[" }}
|
103 |
+
{%- for tool_call in message.tool_calls %}
|
104 |
+
{%- if tool_call.function is defined %}
|
105 |
+
{%- set out = tool_call.function|tojson %}
|
106 |
+
{%- if not tool_call.id is defined %}
|
107 |
+
{{- out }}
|
108 |
+
{%- else %}
|
109 |
+
{{- out[:-1] }}
|
110 |
+
{{- ', "id": "' + tool_call.id + '"}' }}
|
111 |
+
{%- endif %}
|
112 |
+
{%- else %}
|
113 |
+
{{- tool_call|tojson }}
|
114 |
+
{%- endif %}
|
115 |
+
{%- if not loop.last %}
|
116 |
+
{{- ", " }}
|
117 |
+
{%- else %}
|
118 |
+
{{- "]<|eot|>" }}
|
119 |
+
{%- endif %}
|
120 |
+
{%- endfor %}
|
121 |
+
|
122 |
+
{#- Case 3 - the response is from a tool call. #}
|
123 |
+
{%- elif message.role == "ipython" or message["role"] == "tool_results" or message["role"] == "tool" %}
|
124 |
+
{{- "<|header_start|>ipython<|header_end|>
|
125 |
+
|
126 |
+
" }}
|
127 |
+
{%- if message.tool_call_id is defined and message.tool_call_id != '' %}
|
128 |
+
{{- '{"content": ' }}
|
129 |
+
{%- if message.content is mapping or (message.content is iterable and not message.content is string) %}
|
130 |
+
{{- message.content | tojson }}
|
131 |
+
{%- else %}
|
132 |
+
{{- '"' ~ message.content ~ '"' }}
|
133 |
+
{%- endif %}
|
134 |
+
{{- ', "call_id": "' ~ message.tool_call_id ~ '"}' }}
|
135 |
+
{%- else %}
|
136 |
+
{%- if message.content is mapping or (message.content is iterable and not message.content is string) %}
|
137 |
+
{{- message.content | tojson }}
|
138 |
+
{%- else %}
|
139 |
+
{{- message.content }}
|
140 |
+
{%- endif %}
|
141 |
+
{%- endif %}
|
142 |
+
{{- "<|eot|>" }}
|
143 |
+
{%- endif %}
|
144 |
+
{%- endfor %}
|
145 |
+
{%- if add_generation_prompt %}
|
146 |
+
{{- '<|header_start|>assistant<|header_end|>\n\n' }}
|
147 |
+
{%- if enable_thinking %}
|
148 |
+
{{- '<think>\n' }}
|
149 |
+
{%- endif %}
|
150 |
+
{%- endif %}
|
config.json
ADDED
@@ -0,0 +1,662 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"Llama4ForConditionalGeneration"
|
4 |
+
],
|
5 |
+
"boi_token_index": 200080,
|
6 |
+
"eoi_token_index": 200081,
|
7 |
+
"image_token_index": 200092,
|
8 |
+
"model_type": "llama4",
|
9 |
+
"quantization_config": {
|
10 |
+
"config_groups": {
|
11 |
+
"group_0": {
|
12 |
+
"input_activations": null,
|
13 |
+
"output_activations": null,
|
14 |
+
"targets": [
|
15 |
+
"Linear"
|
16 |
+
],
|
17 |
+
"weights": {
|
18 |
+
"actorder": null,
|
19 |
+
"block_structure": null,
|
20 |
+
"dynamic": false,
|
21 |
+
"group_size": 128,
|
22 |
+
"num_bits": 4,
|
23 |
+
"observer": "minmax",
|
24 |
+
"observer_kwargs": {},
|
25 |
+
"strategy": "group",
|
26 |
+
"symmetric": true,
|
27 |
+
"type": "int"
|
28 |
+
}
|
29 |
+
}
|
30 |
+
},
|
31 |
+
"format": "pack-quantized",
|
32 |
+
"global_compression_ratio": null,
|
33 |
+
"ignore": [
|
34 |
+
"vision_model.patch_embedding.linear",
|
35 |
+
"vision_model.model.layers.0.self_attn.q_proj",
|
36 |
+
"vision_model.model.layers.0.self_attn.k_proj",
|
37 |
+
"vision_model.model.layers.0.self_attn.v_proj",
|
38 |
+
"vision_model.model.layers.0.self_attn.o_proj",
|
39 |
+
"vision_model.model.layers.0.mlp.fc1",
|
40 |
+
"vision_model.model.layers.0.mlp.fc2",
|
41 |
+
"vision_model.model.layers.1.self_attn.q_proj",
|
42 |
+
"vision_model.model.layers.1.self_attn.k_proj",
|
43 |
+
"vision_model.model.layers.1.self_attn.v_proj",
|
44 |
+
"vision_model.model.layers.1.self_attn.o_proj",
|
45 |
+
"vision_model.model.layers.1.mlp.fc1",
|
46 |
+
"vision_model.model.layers.1.mlp.fc2",
|
47 |
+
"vision_model.model.layers.2.self_attn.q_proj",
|
48 |
+
"vision_model.model.layers.2.self_attn.k_proj",
|
49 |
+
"vision_model.model.layers.2.self_attn.v_proj",
|
50 |
+
"vision_model.model.layers.2.self_attn.o_proj",
|
51 |
+
"vision_model.model.layers.2.mlp.fc1",
|
52 |
+
"vision_model.model.layers.2.mlp.fc2",
|
53 |
+
"vision_model.model.layers.3.self_attn.q_proj",
|
54 |
+
"vision_model.model.layers.3.self_attn.k_proj",
|
55 |
+
"vision_model.model.layers.3.self_attn.v_proj",
|
56 |
+
"vision_model.model.layers.3.self_attn.o_proj",
|
57 |
+
"vision_model.model.layers.3.mlp.fc1",
|
58 |
+
"vision_model.model.layers.3.mlp.fc2",
|
59 |
+
"vision_model.model.layers.4.self_attn.q_proj",
|
60 |
+
"vision_model.model.layers.4.self_attn.k_proj",
|
61 |
+
"vision_model.model.layers.4.self_attn.v_proj",
|
62 |
+
"vision_model.model.layers.4.self_attn.o_proj",
|
63 |
+
"vision_model.model.layers.4.mlp.fc1",
|
64 |
+
"vision_model.model.layers.4.mlp.fc2",
|
65 |
+
"vision_model.model.layers.5.self_attn.q_proj",
|
66 |
+
"vision_model.model.layers.5.self_attn.k_proj",
|
67 |
+
"vision_model.model.layers.5.self_attn.v_proj",
|
68 |
+
"vision_model.model.layers.5.self_attn.o_proj",
|
69 |
+
"vision_model.model.layers.5.mlp.fc1",
|
70 |
+
"vision_model.model.layers.5.mlp.fc2",
|
71 |
+
"vision_model.model.layers.6.self_attn.q_proj",
|
72 |
+
"vision_model.model.layers.6.self_attn.k_proj",
|
73 |
+
"vision_model.model.layers.6.self_attn.v_proj",
|
74 |
+
"vision_model.model.layers.6.self_attn.o_proj",
|
75 |
+
"vision_model.model.layers.6.mlp.fc1",
|
76 |
+
"vision_model.model.layers.6.mlp.fc2",
|
77 |
+
"vision_model.model.layers.7.self_attn.q_proj",
|
78 |
+
"vision_model.model.layers.7.self_attn.k_proj",
|
79 |
+
"vision_model.model.layers.7.self_attn.v_proj",
|
80 |
+
"vision_model.model.layers.7.self_attn.o_proj",
|
81 |
+
"vision_model.model.layers.7.mlp.fc1",
|
82 |
+
"vision_model.model.layers.7.mlp.fc2",
|
83 |
+
"vision_model.model.layers.8.self_attn.q_proj",
|
84 |
+
"vision_model.model.layers.8.self_attn.k_proj",
|
85 |
+
"vision_model.model.layers.8.self_attn.v_proj",
|
86 |
+
"vision_model.model.layers.8.self_attn.o_proj",
|
87 |
+
"vision_model.model.layers.8.mlp.fc1",
|
88 |
+
"vision_model.model.layers.8.mlp.fc2",
|
89 |
+
"vision_model.model.layers.9.self_attn.q_proj",
|
90 |
+
"vision_model.model.layers.9.self_attn.k_proj",
|
91 |
+
"vision_model.model.layers.9.self_attn.v_proj",
|
92 |
+
"vision_model.model.layers.9.self_attn.o_proj",
|
93 |
+
"vision_model.model.layers.9.mlp.fc1",
|
94 |
+
"vision_model.model.layers.9.mlp.fc2",
|
95 |
+
"vision_model.model.layers.10.self_attn.q_proj",
|
96 |
+
"vision_model.model.layers.10.self_attn.k_proj",
|
97 |
+
"vision_model.model.layers.10.self_attn.v_proj",
|
98 |
+
"vision_model.model.layers.10.self_attn.o_proj",
|
99 |
+
"vision_model.model.layers.10.mlp.fc1",
|
100 |
+
"vision_model.model.layers.10.mlp.fc2",
|
101 |
+
"vision_model.model.layers.11.self_attn.q_proj",
|
102 |
+
"vision_model.model.layers.11.self_attn.k_proj",
|
103 |
+
"vision_model.model.layers.11.self_attn.v_proj",
|
104 |
+
"vision_model.model.layers.11.self_attn.o_proj",
|
105 |
+
"vision_model.model.layers.11.mlp.fc1",
|
106 |
+
"vision_model.model.layers.11.mlp.fc2",
|
107 |
+
"vision_model.model.layers.12.self_attn.q_proj",
|
108 |
+
"vision_model.model.layers.12.self_attn.k_proj",
|
109 |
+
"vision_model.model.layers.12.self_attn.v_proj",
|
110 |
+
"vision_model.model.layers.12.self_attn.o_proj",
|
111 |
+
"vision_model.model.layers.12.mlp.fc1",
|
112 |
+
"vision_model.model.layers.12.mlp.fc2",
|
113 |
+
"vision_model.model.layers.13.self_attn.q_proj",
|
114 |
+
"vision_model.model.layers.13.self_attn.k_proj",
|
115 |
+
"vision_model.model.layers.13.self_attn.v_proj",
|
116 |
+
"vision_model.model.layers.13.self_attn.o_proj",
|
117 |
+
"vision_model.model.layers.13.mlp.fc1",
|
118 |
+
"vision_model.model.layers.13.mlp.fc2",
|
119 |
+
"vision_model.model.layers.14.self_attn.q_proj",
|
120 |
+
"vision_model.model.layers.14.self_attn.k_proj",
|
121 |
+
"vision_model.model.layers.14.self_attn.v_proj",
|
122 |
+
"vision_model.model.layers.14.self_attn.o_proj",
|
123 |
+
"vision_model.model.layers.14.mlp.fc1",
|
124 |
+
"vision_model.model.layers.14.mlp.fc2",
|
125 |
+
"vision_model.model.layers.15.self_attn.q_proj",
|
126 |
+
"vision_model.model.layers.15.self_attn.k_proj",
|
127 |
+
"vision_model.model.layers.15.self_attn.v_proj",
|
128 |
+
"vision_model.model.layers.15.self_attn.o_proj",
|
129 |
+
"vision_model.model.layers.15.mlp.fc1",
|
130 |
+
"vision_model.model.layers.15.mlp.fc2",
|
131 |
+
"vision_model.model.layers.16.self_attn.q_proj",
|
132 |
+
"vision_model.model.layers.16.self_attn.k_proj",
|
133 |
+
"vision_model.model.layers.16.self_attn.v_proj",
|
134 |
+
"vision_model.model.layers.16.self_attn.o_proj",
|
135 |
+
"vision_model.model.layers.16.mlp.fc1",
|
136 |
+
"vision_model.model.layers.16.mlp.fc2",
|
137 |
+
"vision_model.model.layers.17.self_attn.q_proj",
|
138 |
+
"vision_model.model.layers.17.self_attn.k_proj",
|
139 |
+
"vision_model.model.layers.17.self_attn.v_proj",
|
140 |
+
"vision_model.model.layers.17.self_attn.o_proj",
|
141 |
+
"vision_model.model.layers.17.mlp.fc1",
|
142 |
+
"vision_model.model.layers.17.mlp.fc2",
|
143 |
+
"vision_model.model.layers.18.self_attn.q_proj",
|
144 |
+
"vision_model.model.layers.18.self_attn.k_proj",
|
145 |
+
"vision_model.model.layers.18.self_attn.v_proj",
|
146 |
+
"vision_model.model.layers.18.self_attn.o_proj",
|
147 |
+
"vision_model.model.layers.18.mlp.fc1",
|
148 |
+
"vision_model.model.layers.18.mlp.fc2",
|
149 |
+
"vision_model.model.layers.19.self_attn.q_proj",
|
150 |
+
"vision_model.model.layers.19.self_attn.k_proj",
|
151 |
+
"vision_model.model.layers.19.self_attn.v_proj",
|
152 |
+
"vision_model.model.layers.19.self_attn.o_proj",
|
153 |
+
"vision_model.model.layers.19.mlp.fc1",
|
154 |
+
"vision_model.model.layers.19.mlp.fc2",
|
155 |
+
"vision_model.model.layers.20.self_attn.q_proj",
|
156 |
+
"vision_model.model.layers.20.self_attn.k_proj",
|
157 |
+
"vision_model.model.layers.20.self_attn.v_proj",
|
158 |
+
"vision_model.model.layers.20.self_attn.o_proj",
|
159 |
+
"vision_model.model.layers.20.mlp.fc1",
|
160 |
+
"vision_model.model.layers.20.mlp.fc2",
|
161 |
+
"vision_model.model.layers.21.self_attn.q_proj",
|
162 |
+
"vision_model.model.layers.21.self_attn.k_proj",
|
163 |
+
"vision_model.model.layers.21.self_attn.v_proj",
|
164 |
+
"vision_model.model.layers.21.self_attn.o_proj",
|
165 |
+
"vision_model.model.layers.21.mlp.fc1",
|
166 |
+
"vision_model.model.layers.21.mlp.fc2",
|
167 |
+
"vision_model.model.layers.22.self_attn.q_proj",
|
168 |
+
"vision_model.model.layers.22.self_attn.k_proj",
|
169 |
+
"vision_model.model.layers.22.self_attn.v_proj",
|
170 |
+
"vision_model.model.layers.22.self_attn.o_proj",
|
171 |
+
"vision_model.model.layers.22.mlp.fc1",
|
172 |
+
"vision_model.model.layers.22.mlp.fc2",
|
173 |
+
"vision_model.model.layers.23.self_attn.q_proj",
|
174 |
+
"vision_model.model.layers.23.self_attn.k_proj",
|
175 |
+
"vision_model.model.layers.23.self_attn.v_proj",
|
176 |
+
"vision_model.model.layers.23.self_attn.o_proj",
|
177 |
+
"vision_model.model.layers.23.mlp.fc1",
|
178 |
+
"vision_model.model.layers.23.mlp.fc2",
|
179 |
+
"vision_model.model.layers.24.self_attn.q_proj",
|
180 |
+
"vision_model.model.layers.24.self_attn.k_proj",
|
181 |
+
"vision_model.model.layers.24.self_attn.v_proj",
|
182 |
+
"vision_model.model.layers.24.self_attn.o_proj",
|
183 |
+
"vision_model.model.layers.24.mlp.fc1",
|
184 |
+
"vision_model.model.layers.24.mlp.fc2",
|
185 |
+
"vision_model.model.layers.25.self_attn.q_proj",
|
186 |
+
"vision_model.model.layers.25.self_attn.k_proj",
|
187 |
+
"vision_model.model.layers.25.self_attn.v_proj",
|
188 |
+
"vision_model.model.layers.25.self_attn.o_proj",
|
189 |
+
"vision_model.model.layers.25.mlp.fc1",
|
190 |
+
"vision_model.model.layers.25.mlp.fc2",
|
191 |
+
"vision_model.model.layers.26.self_attn.q_proj",
|
192 |
+
"vision_model.model.layers.26.self_attn.k_proj",
|
193 |
+
"vision_model.model.layers.26.self_attn.v_proj",
|
194 |
+
"vision_model.model.layers.26.self_attn.o_proj",
|
195 |
+
"vision_model.model.layers.26.mlp.fc1",
|
196 |
+
"vision_model.model.layers.26.mlp.fc2",
|
197 |
+
"vision_model.model.layers.27.self_attn.q_proj",
|
198 |
+
"vision_model.model.layers.27.self_attn.k_proj",
|
199 |
+
"vision_model.model.layers.27.self_attn.v_proj",
|
200 |
+
"vision_model.model.layers.27.self_attn.o_proj",
|
201 |
+
"vision_model.model.layers.27.mlp.fc1",
|
202 |
+
"vision_model.model.layers.27.mlp.fc2",
|
203 |
+
"vision_model.model.layers.28.self_attn.q_proj",
|
204 |
+
"vision_model.model.layers.28.self_attn.k_proj",
|
205 |
+
"vision_model.model.layers.28.self_attn.v_proj",
|
206 |
+
"vision_model.model.layers.28.self_attn.o_proj",
|
207 |
+
"vision_model.model.layers.28.mlp.fc1",
|
208 |
+
"vision_model.model.layers.28.mlp.fc2",
|
209 |
+
"vision_model.model.layers.29.self_attn.q_proj",
|
210 |
+
"vision_model.model.layers.29.self_attn.k_proj",
|
211 |
+
"vision_model.model.layers.29.self_attn.v_proj",
|
212 |
+
"vision_model.model.layers.29.self_attn.o_proj",
|
213 |
+
"vision_model.model.layers.29.mlp.fc1",
|
214 |
+
"vision_model.model.layers.29.mlp.fc2",
|
215 |
+
"vision_model.model.layers.30.self_attn.q_proj",
|
216 |
+
"vision_model.model.layers.30.self_attn.k_proj",
|
217 |
+
"vision_model.model.layers.30.self_attn.v_proj",
|
218 |
+
"vision_model.model.layers.30.self_attn.o_proj",
|
219 |
+
"vision_model.model.layers.30.mlp.fc1",
|
220 |
+
"vision_model.model.layers.30.mlp.fc2",
|
221 |
+
"vision_model.model.layers.31.self_attn.q_proj",
|
222 |
+
"vision_model.model.layers.31.self_attn.k_proj",
|
223 |
+
"vision_model.model.layers.31.self_attn.v_proj",
|
224 |
+
"vision_model.model.layers.31.self_attn.o_proj",
|
225 |
+
"vision_model.model.layers.31.mlp.fc1",
|
226 |
+
"vision_model.model.layers.31.mlp.fc2",
|
227 |
+
"vision_model.model.layers.32.self_attn.q_proj",
|
228 |
+
"vision_model.model.layers.32.self_attn.k_proj",
|
229 |
+
"vision_model.model.layers.32.self_attn.v_proj",
|
230 |
+
"vision_model.model.layers.32.self_attn.o_proj",
|
231 |
+
"vision_model.model.layers.32.mlp.fc1",
|
232 |
+
"vision_model.model.layers.32.mlp.fc2",
|
233 |
+
"vision_model.model.layers.33.self_attn.q_proj",
|
234 |
+
"vision_model.model.layers.33.self_attn.k_proj",
|
235 |
+
"vision_model.model.layers.33.self_attn.v_proj",
|
236 |
+
"vision_model.model.layers.33.self_attn.o_proj",
|
237 |
+
"vision_model.model.layers.33.mlp.fc1",
|
238 |
+
"vision_model.model.layers.33.mlp.fc2",
|
239 |
+
"vision_model.vision_adapter.mlp.fc1",
|
240 |
+
"vision_model.vision_adapter.mlp.fc2",
|
241 |
+
"multi_modal_projector.linear_1",
|
242 |
+
"language_model.model.layers.0.self_attn.q_proj",
|
243 |
+
"language_model.model.layers.0.self_attn.k_proj",
|
244 |
+
"language_model.model.layers.0.self_attn.v_proj",
|
245 |
+
"language_model.model.layers.0.self_attn.o_proj",
|
246 |
+
"language_model.model.layers.1.self_attn.q_proj",
|
247 |
+
"language_model.model.layers.1.self_attn.k_proj",
|
248 |
+
"language_model.model.layers.1.self_attn.v_proj",
|
249 |
+
"language_model.model.layers.1.self_attn.o_proj",
|
250 |
+
"language_model.model.layers.2.self_attn.q_proj",
|
251 |
+
"language_model.model.layers.2.self_attn.k_proj",
|
252 |
+
"language_model.model.layers.2.self_attn.v_proj",
|
253 |
+
"language_model.model.layers.2.self_attn.o_proj",
|
254 |
+
"language_model.model.layers.3.self_attn.q_proj",
|
255 |
+
"language_model.model.layers.3.self_attn.k_proj",
|
256 |
+
"language_model.model.layers.3.self_attn.v_proj",
|
257 |
+
"language_model.model.layers.3.self_attn.o_proj",
|
258 |
+
"language_model.model.layers.4.self_attn.q_proj",
|
259 |
+
"language_model.model.layers.4.self_attn.k_proj",
|
260 |
+
"language_model.model.layers.4.self_attn.v_proj",
|
261 |
+
"language_model.model.layers.4.self_attn.o_proj",
|
262 |
+
"language_model.model.layers.5.self_attn.q_proj",
|
263 |
+
"language_model.model.layers.5.self_attn.k_proj",
|
264 |
+
"language_model.model.layers.5.self_attn.v_proj",
|
265 |
+
"language_model.model.layers.5.self_attn.o_proj",
|
266 |
+
"language_model.model.layers.6.self_attn.q_proj",
|
267 |
+
"language_model.model.layers.6.self_attn.k_proj",
|
268 |
+
"language_model.model.layers.6.self_attn.v_proj",
|
269 |
+
"language_model.model.layers.6.self_attn.o_proj",
|
270 |
+
"language_model.model.layers.7.self_attn.q_proj",
|
271 |
+
"language_model.model.layers.7.self_attn.k_proj",
|
272 |
+
"language_model.model.layers.7.self_attn.v_proj",
|
273 |
+
"language_model.model.layers.7.self_attn.o_proj",
|
274 |
+
"language_model.model.layers.8.self_attn.q_proj",
|
275 |
+
"language_model.model.layers.8.self_attn.k_proj",
|
276 |
+
"language_model.model.layers.8.self_attn.v_proj",
|
277 |
+
"language_model.model.layers.8.self_attn.o_proj",
|
278 |
+
"language_model.model.layers.9.self_attn.q_proj",
|
279 |
+
"language_model.model.layers.9.self_attn.k_proj",
|
280 |
+
"language_model.model.layers.9.self_attn.v_proj",
|
281 |
+
"language_model.model.layers.9.self_attn.o_proj",
|
282 |
+
"language_model.model.layers.10.self_attn.q_proj",
|
283 |
+
"language_model.model.layers.10.self_attn.k_proj",
|
284 |
+
"language_model.model.layers.10.self_attn.v_proj",
|
285 |
+
"language_model.model.layers.10.self_attn.o_proj",
|
286 |
+
"language_model.model.layers.11.self_attn.q_proj",
|
287 |
+
"language_model.model.layers.11.self_attn.k_proj",
|
288 |
+
"language_model.model.layers.11.self_attn.v_proj",
|
289 |
+
"language_model.model.layers.11.self_attn.o_proj",
|
290 |
+
"language_model.model.layers.12.self_attn.q_proj",
|
291 |
+
"language_model.model.layers.12.self_attn.k_proj",
|
292 |
+
"language_model.model.layers.12.self_attn.v_proj",
|
293 |
+
"language_model.model.layers.12.self_attn.o_proj",
|
294 |
+
"language_model.model.layers.13.self_attn.q_proj",
|
295 |
+
"language_model.model.layers.13.self_attn.k_proj",
|
296 |
+
"language_model.model.layers.13.self_attn.v_proj",
|
297 |
+
"language_model.model.layers.13.self_attn.o_proj",
|
298 |
+
"language_model.model.layers.14.self_attn.q_proj",
|
299 |
+
"language_model.model.layers.14.self_attn.k_proj",
|
300 |
+
"language_model.model.layers.14.self_attn.v_proj",
|
301 |
+
"language_model.model.layers.14.self_attn.o_proj",
|
302 |
+
"language_model.model.layers.15.self_attn.q_proj",
|
303 |
+
"language_model.model.layers.15.self_attn.k_proj",
|
304 |
+
"language_model.model.layers.15.self_attn.v_proj",
|
305 |
+
"language_model.model.layers.15.self_attn.o_proj",
|
306 |
+
"language_model.model.layers.16.self_attn.q_proj",
|
307 |
+
"language_model.model.layers.16.self_attn.k_proj",
|
308 |
+
"language_model.model.layers.16.self_attn.v_proj",
|
309 |
+
"language_model.model.layers.16.self_attn.o_proj",
|
310 |
+
"language_model.model.layers.17.self_attn.q_proj",
|
311 |
+
"language_model.model.layers.17.self_attn.k_proj",
|
312 |
+
"language_model.model.layers.17.self_attn.v_proj",
|
313 |
+
"language_model.model.layers.17.self_attn.o_proj",
|
314 |
+
"language_model.model.layers.18.self_attn.q_proj",
|
315 |
+
"language_model.model.layers.18.self_attn.k_proj",
|
316 |
+
"language_model.model.layers.18.self_attn.v_proj",
|
317 |
+
"language_model.model.layers.18.self_attn.o_proj",
|
318 |
+
"language_model.model.layers.19.self_attn.q_proj",
|
319 |
+
"language_model.model.layers.19.self_attn.k_proj",
|
320 |
+
"language_model.model.layers.19.self_attn.v_proj",
|
321 |
+
"language_model.model.layers.19.self_attn.o_proj",
|
322 |
+
"language_model.model.layers.20.self_attn.q_proj",
|
323 |
+
"language_model.model.layers.20.self_attn.k_proj",
|
324 |
+
"language_model.model.layers.20.self_attn.v_proj",
|
325 |
+
"language_model.model.layers.20.self_attn.o_proj",
|
326 |
+
"language_model.model.layers.21.self_attn.q_proj",
|
327 |
+
"language_model.model.layers.21.self_attn.k_proj",
|
328 |
+
"language_model.model.layers.21.self_attn.v_proj",
|
329 |
+
"language_model.model.layers.21.self_attn.o_proj",
|
330 |
+
"language_model.model.layers.22.self_attn.q_proj",
|
331 |
+
"language_model.model.layers.22.self_attn.k_proj",
|
332 |
+
"language_model.model.layers.22.self_attn.v_proj",
|
333 |
+
"language_model.model.layers.22.self_attn.o_proj",
|
334 |
+
"language_model.model.layers.23.self_attn.q_proj",
|
335 |
+
"language_model.model.layers.23.self_attn.k_proj",
|
336 |
+
"language_model.model.layers.23.self_attn.v_proj",
|
337 |
+
"language_model.model.layers.23.self_attn.o_proj",
|
338 |
+
"language_model.model.layers.24.self_attn.q_proj",
|
339 |
+
"language_model.model.layers.24.self_attn.k_proj",
|
340 |
+
"language_model.model.layers.24.self_attn.v_proj",
|
341 |
+
"language_model.model.layers.24.self_attn.o_proj",
|
342 |
+
"language_model.model.layers.25.self_attn.q_proj",
|
343 |
+
"language_model.model.layers.25.self_attn.k_proj",
|
344 |
+
"language_model.model.layers.25.self_attn.v_proj",
|
345 |
+
"language_model.model.layers.25.self_attn.o_proj",
|
346 |
+
"language_model.model.layers.26.self_attn.q_proj",
|
347 |
+
"language_model.model.layers.26.self_attn.k_proj",
|
348 |
+
"language_model.model.layers.26.self_attn.v_proj",
|
349 |
+
"language_model.model.layers.26.self_attn.o_proj",
|
350 |
+
"language_model.model.layers.27.self_attn.q_proj",
|
351 |
+
"language_model.model.layers.27.self_attn.k_proj",
|
352 |
+
"language_model.model.layers.27.self_attn.v_proj",
|
353 |
+
"language_model.model.layers.27.self_attn.o_proj",
|
354 |
+
"language_model.model.layers.28.self_attn.q_proj",
|
355 |
+
"language_model.model.layers.28.self_attn.k_proj",
|
356 |
+
"language_model.model.layers.28.self_attn.v_proj",
|
357 |
+
"language_model.model.layers.28.self_attn.o_proj",
|
358 |
+
"language_model.model.layers.29.self_attn.q_proj",
|
359 |
+
"language_model.model.layers.29.self_attn.k_proj",
|
360 |
+
"language_model.model.layers.29.self_attn.v_proj",
|
361 |
+
"language_model.model.layers.29.self_attn.o_proj",
|
362 |
+
"language_model.model.layers.30.self_attn.q_proj",
|
363 |
+
"language_model.model.layers.30.self_attn.k_proj",
|
364 |
+
"language_model.model.layers.30.self_attn.v_proj",
|
365 |
+
"language_model.model.layers.30.self_attn.o_proj",
|
366 |
+
"language_model.model.layers.31.self_attn.q_proj",
|
367 |
+
"language_model.model.layers.31.self_attn.k_proj",
|
368 |
+
"language_model.model.layers.31.self_attn.v_proj",
|
369 |
+
"language_model.model.layers.31.self_attn.o_proj",
|
370 |
+
"language_model.model.layers.32.self_attn.q_proj",
|
371 |
+
"language_model.model.layers.32.self_attn.k_proj",
|
372 |
+
"language_model.model.layers.32.self_attn.v_proj",
|
373 |
+
"language_model.model.layers.32.self_attn.o_proj",
|
374 |
+
"language_model.model.layers.33.self_attn.q_proj",
|
375 |
+
"language_model.model.layers.33.self_attn.k_proj",
|
376 |
+
"language_model.model.layers.33.self_attn.v_proj",
|
377 |
+
"language_model.model.layers.33.self_attn.o_proj",
|
378 |
+
"language_model.model.layers.34.self_attn.q_proj",
|
379 |
+
"language_model.model.layers.34.self_attn.k_proj",
|
380 |
+
"language_model.model.layers.34.self_attn.v_proj",
|
381 |
+
"language_model.model.layers.34.self_attn.o_proj",
|
382 |
+
"language_model.model.layers.35.self_attn.q_proj",
|
383 |
+
"language_model.model.layers.35.self_attn.k_proj",
|
384 |
+
"language_model.model.layers.35.self_attn.v_proj",
|
385 |
+
"language_model.model.layers.35.self_attn.o_proj",
|
386 |
+
"language_model.model.layers.36.self_attn.q_proj",
|
387 |
+
"language_model.model.layers.36.self_attn.k_proj",
|
388 |
+
"language_model.model.layers.36.self_attn.v_proj",
|
389 |
+
"language_model.model.layers.36.self_attn.o_proj",
|
390 |
+
"language_model.model.layers.37.self_attn.q_proj",
|
391 |
+
"language_model.model.layers.37.self_attn.k_proj",
|
392 |
+
"language_model.model.layers.37.self_attn.v_proj",
|
393 |
+
"language_model.model.layers.37.self_attn.o_proj",
|
394 |
+
"language_model.model.layers.38.self_attn.q_proj",
|
395 |
+
"language_model.model.layers.38.self_attn.k_proj",
|
396 |
+
"language_model.model.layers.38.self_attn.v_proj",
|
397 |
+
"language_model.model.layers.38.self_attn.o_proj",
|
398 |
+
"language_model.model.layers.39.self_attn.q_proj",
|
399 |
+
"language_model.model.layers.39.self_attn.k_proj",
|
400 |
+
"language_model.model.layers.39.self_attn.v_proj",
|
401 |
+
"language_model.model.layers.39.self_attn.o_proj",
|
402 |
+
"language_model.model.layers.40.self_attn.q_proj",
|
403 |
+
"language_model.model.layers.40.self_attn.k_proj",
|
404 |
+
"language_model.model.layers.40.self_attn.v_proj",
|
405 |
+
"language_model.model.layers.40.self_attn.o_proj",
|
406 |
+
"language_model.model.layers.41.self_attn.q_proj",
|
407 |
+
"language_model.model.layers.41.self_attn.k_proj",
|
408 |
+
"language_model.model.layers.41.self_attn.v_proj",
|
409 |
+
"language_model.model.layers.41.self_attn.o_proj",
|
410 |
+
"language_model.model.layers.42.self_attn.q_proj",
|
411 |
+
"language_model.model.layers.42.self_attn.k_proj",
|
412 |
+
"language_model.model.layers.42.self_attn.v_proj",
|
413 |
+
"language_model.model.layers.42.self_attn.o_proj",
|
414 |
+
"language_model.model.layers.43.self_attn.q_proj",
|
415 |
+
"language_model.model.layers.43.self_attn.k_proj",
|
416 |
+
"language_model.model.layers.43.self_attn.v_proj",
|
417 |
+
"language_model.model.layers.43.self_attn.o_proj",
|
418 |
+
"language_model.model.layers.44.self_attn.q_proj",
|
419 |
+
"language_model.model.layers.44.self_attn.k_proj",
|
420 |
+
"language_model.model.layers.44.self_attn.v_proj",
|
421 |
+
"language_model.model.layers.44.self_attn.o_proj",
|
422 |
+
"language_model.model.layers.45.self_attn.q_proj",
|
423 |
+
"language_model.model.layers.45.self_attn.k_proj",
|
424 |
+
"language_model.model.layers.45.self_attn.v_proj",
|
425 |
+
"language_model.model.layers.45.self_attn.o_proj",
|
426 |
+
"language_model.model.layers.46.self_attn.q_proj",
|
427 |
+
"language_model.model.layers.46.self_attn.k_proj",
|
428 |
+
"language_model.model.layers.46.self_attn.v_proj",
|
429 |
+
"language_model.model.layers.46.self_attn.o_proj",
|
430 |
+
"language_model.model.layers.47.self_attn.q_proj",
|
431 |
+
"language_model.model.layers.47.self_attn.k_proj",
|
432 |
+
"language_model.model.layers.47.self_attn.v_proj",
|
433 |
+
"language_model.model.layers.47.self_attn.o_proj",
|
434 |
+
"language_model.lm_head"
|
435 |
+
],
|
436 |
+
"kv_cache_scheme": null,
|
437 |
+
"quant_method": "compressed-tensors",
|
438 |
+
"quantization_status": "compressed"
|
439 |
+
},
|
440 |
+
"text_config": {
|
441 |
+
"attention_bias": false,
|
442 |
+
"attention_chunk_size": 8192,
|
443 |
+
"attention_dropout": 0.0,
|
444 |
+
"attn_scale": 0.1,
|
445 |
+
"attn_temperature_tuning": true,
|
446 |
+
"bos_token_id": 200000,
|
447 |
+
"eos_token_id": [
|
448 |
+
200001,
|
449 |
+
200007,
|
450 |
+
200008
|
451 |
+
],
|
452 |
+
"floor_scale": 8192,
|
453 |
+
"for_llm_compressor": false,
|
454 |
+
"head_dim": 128,
|
455 |
+
"hidden_act": "silu",
|
456 |
+
"hidden_size": 5120,
|
457 |
+
"initializer_range": 0.02,
|
458 |
+
"interleave_moe_layer_step": 1,
|
459 |
+
"intermediate_size": 8192,
|
460 |
+
"intermediate_size_mlp": 16384,
|
461 |
+
"layer_types": [
|
462 |
+
"chunked_attention",
|
463 |
+
"chunked_attention",
|
464 |
+
"chunked_attention",
|
465 |
+
"full_attention",
|
466 |
+
"chunked_attention",
|
467 |
+
"chunked_attention",
|
468 |
+
"chunked_attention",
|
469 |
+
"full_attention",
|
470 |
+
"chunked_attention",
|
471 |
+
"chunked_attention",
|
472 |
+
"chunked_attention",
|
473 |
+
"full_attention",
|
474 |
+
"chunked_attention",
|
475 |
+
"chunked_attention",
|
476 |
+
"chunked_attention",
|
477 |
+
"full_attention",
|
478 |
+
"chunked_attention",
|
479 |
+
"chunked_attention",
|
480 |
+
"chunked_attention",
|
481 |
+
"full_attention",
|
482 |
+
"chunked_attention",
|
483 |
+
"chunked_attention",
|
484 |
+
"chunked_attention",
|
485 |
+
"full_attention",
|
486 |
+
"chunked_attention",
|
487 |
+
"chunked_attention",
|
488 |
+
"chunked_attention",
|
489 |
+
"full_attention",
|
490 |
+
"chunked_attention",
|
491 |
+
"chunked_attention",
|
492 |
+
"chunked_attention",
|
493 |
+
"full_attention",
|
494 |
+
"chunked_attention",
|
495 |
+
"chunked_attention",
|
496 |
+
"chunked_attention",
|
497 |
+
"full_attention",
|
498 |
+
"chunked_attention",
|
499 |
+
"chunked_attention",
|
500 |
+
"chunked_attention",
|
501 |
+
"full_attention",
|
502 |
+
"chunked_attention",
|
503 |
+
"chunked_attention",
|
504 |
+
"chunked_attention",
|
505 |
+
"full_attention",
|
506 |
+
"chunked_attention",
|
507 |
+
"chunked_attention",
|
508 |
+
"chunked_attention",
|
509 |
+
"full_attention"
|
510 |
+
],
|
511 |
+
"max_position_embeddings": 262144,
|
512 |
+
"model_type": "llama4_text",
|
513 |
+
"moe_layers": [
|
514 |
+
0,
|
515 |
+
1,
|
516 |
+
2,
|
517 |
+
3,
|
518 |
+
4,
|
519 |
+
5,
|
520 |
+
6,
|
521 |
+
7,
|
522 |
+
8,
|
523 |
+
9,
|
524 |
+
10,
|
525 |
+
11,
|
526 |
+
12,
|
527 |
+
13,
|
528 |
+
14,
|
529 |
+
15,
|
530 |
+
16,
|
531 |
+
17,
|
532 |
+
18,
|
533 |
+
19,
|
534 |
+
20,
|
535 |
+
21,
|
536 |
+
22,
|
537 |
+
23,
|
538 |
+
24,
|
539 |
+
25,
|
540 |
+
26,
|
541 |
+
27,
|
542 |
+
28,
|
543 |
+
29,
|
544 |
+
30,
|
545 |
+
31,
|
546 |
+
32,
|
547 |
+
33,
|
548 |
+
34,
|
549 |
+
35,
|
550 |
+
36,
|
551 |
+
37,
|
552 |
+
38,
|
553 |
+
39,
|
554 |
+
40,
|
555 |
+
41,
|
556 |
+
42,
|
557 |
+
43,
|
558 |
+
44,
|
559 |
+
45,
|
560 |
+
46,
|
561 |
+
47
|
562 |
+
],
|
563 |
+
"no_rope_layers": [
|
564 |
+
1,
|
565 |
+
1,
|
566 |
+
1,
|
567 |
+
0,
|
568 |
+
1,
|
569 |
+
1,
|
570 |
+
1,
|
571 |
+
0,
|
572 |
+
1,
|
573 |
+
1,
|
574 |
+
1,
|
575 |
+
0,
|
576 |
+
1,
|
577 |
+
1,
|
578 |
+
1,
|
579 |
+
0,
|
580 |
+
1,
|
581 |
+
1,
|
582 |
+
1,
|
583 |
+
0,
|
584 |
+
1,
|
585 |
+
1,
|
586 |
+
1,
|
587 |
+
0,
|
588 |
+
1,
|
589 |
+
1,
|
590 |
+
1,
|
591 |
+
0,
|
592 |
+
1,
|
593 |
+
1,
|
594 |
+
1,
|
595 |
+
0,
|
596 |
+
1,
|
597 |
+
1,
|
598 |
+
1,
|
599 |
+
0,
|
600 |
+
1,
|
601 |
+
1,
|
602 |
+
1,
|
603 |
+
0,
|
604 |
+
1,
|
605 |
+
1,
|
606 |
+
1,
|
607 |
+
0,
|
608 |
+
1,
|
609 |
+
1,
|
610 |
+
1,
|
611 |
+
0
|
612 |
+
],
|
613 |
+
"num_attention_heads": 40,
|
614 |
+
"num_experts_per_tok": 1,
|
615 |
+
"num_hidden_layers": 48,
|
616 |
+
"num_key_value_heads": 8,
|
617 |
+
"num_local_experts": 16,
|
618 |
+
"output_router_logits": false,
|
619 |
+
"pad_token_id": 200018,
|
620 |
+
"rms_norm_eps": 1e-05,
|
621 |
+
"rope_scaling": {
|
622 |
+
"factor": 16.0,
|
623 |
+
"high_freq_factor": 1.0,
|
624 |
+
"low_freq_factor": 1.0,
|
625 |
+
"original_max_position_embeddings": 8192,
|
626 |
+
"rope_type": "llama3"
|
627 |
+
},
|
628 |
+
"rope_theta": 500000.0,
|
629 |
+
"router_aux_loss_coef": 0.001,
|
630 |
+
"router_jitter_noise": 0.0,
|
631 |
+
"torch_dtype": "bfloat16",
|
632 |
+
"use_cache": true,
|
633 |
+
"use_qk_norm": true,
|
634 |
+
"vocab_size": 201135
|
635 |
+
},
|
636 |
+
"tie_word_embeddings": false,
|
637 |
+
"torch_dtype": "bfloat16",
|
638 |
+
"transformers_version": "4.54.1",
|
639 |
+
"vision_config": {
|
640 |
+
"attention_dropout": 0.0,
|
641 |
+
"hidden_act": "gelu",
|
642 |
+
"hidden_size": 1408,
|
643 |
+
"image_size": 336,
|
644 |
+
"initializer_range": 0.02,
|
645 |
+
"intermediate_size": 5632,
|
646 |
+
"model_type": "llama4_vision_model",
|
647 |
+
"multi_modal_projector_bias": false,
|
648 |
+
"norm_eps": 1e-05,
|
649 |
+
"num_attention_heads": 16,
|
650 |
+
"num_channels": 3,
|
651 |
+
"num_hidden_layers": 34,
|
652 |
+
"patch_size": 14,
|
653 |
+
"pixel_shuffle_ratio": 0.5,
|
654 |
+
"projector_dropout": 0.0,
|
655 |
+
"projector_input_dim": 4096,
|
656 |
+
"projector_output_dim": 4096,
|
657 |
+
"rope_theta": 10000,
|
658 |
+
"vision_feature_layer": -1,
|
659 |
+
"vision_feature_select_strategy": "default",
|
660 |
+
"vision_output_dim": 4096
|
661 |
+
}
|
662 |
+
}
|
generation_config.json
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 200000,
|
4 |
+
"eos_token_id": [
|
5 |
+
200001,
|
6 |
+
200007,
|
7 |
+
200008
|
8 |
+
],
|
9 |
+
"pad_token_id": 200018,
|
10 |
+
"transformers_version": "4.54.1"
|
11 |
+
}
|
get_size.py
ADDED
@@ -0,0 +1,14 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os, json
|
2 |
+
|
3 |
+
# 1) load your existing index
|
4 |
+
index_path = "model.safetensors.index.json"
|
5 |
+
with open(index_path, "r") as f:
|
6 |
+
idx = json.load(f)
|
7 |
+
|
8 |
+
# 2) find all the shards
|
9 |
+
shards = sorted(f for f in os.listdir(".")
|
10 |
+
if f.startswith("model-") and f.endswith(".safetensors"))
|
11 |
+
|
12 |
+
# 3) sum their sizes
|
13 |
+
total_size = sum(os.path.getsize(s) for s in shards)
|
14 |
+
print(f"Found {len(shards)} shards, total_size = {total_size} bytes")
|
images/README
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
Directory for images associated with the model.
|
images/cogito-v2-109b-benchmarks.png
ADDED
![]() |
Git LFS Details
|
images/deep-cogito-logo.png
ADDED
![]() |
model-00001-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55183a0814b59a545bae3fca480e45b37c6ebdb5e7273fbb8d5bf61cc29fcf7b
|
3 |
+
size 4989289528
|
model-00002-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9431faffe2702aa668774db9f637dd2bcf502805b0c5ccdf3104b2f49cc027ce
|
3 |
+
size 4959308680
|
model-00003-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b55e715913966c598035e1b5fbfd334cfedd6c3bb9b55bbce9931c1dcc11e79f
|
3 |
+
size 4989434120
|
model-00004-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:55737b49d896dd40ede5c567c5355095dc81ce9414b6e5127b908f1ddf2e73cd
|
3 |
+
size 4990090304
|
model-00005-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dfa2f3e5c8b10553bfaa00b87d408293f56adab075707bb4e130f88414f6f022
|
3 |
+
size 4980916048
|
model-00006-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1f43b6af23fcb97c89dfa33a253069d74fdcf42f9c0428c84055eef705d3f8e2
|
3 |
+
size 4980916048
|
model-00007-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e3a625c5ac2631dfaf5b705e0ff88c12b0c101828b17961268111a67ff5be22
|
3 |
+
size 4980916048
|
model-00008-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2732f629c6b7bd9f23143c87977a8b89ee8b96cece1c2a67fc06242c2c241feb
|
3 |
+
size 4980916048
|
model-00009-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff473bccdd6d79041ceb42a35dfa6451a523978a0be024b4507c0a8a25be1d07
|
3 |
+
size 4980916048
|
model-00010-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2ce66771aa3547f51cc64acf5169eab90aa0f060bee745594e0c8669d812365f
|
3 |
+
size 4980916048
|
model-00011-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3fd97df8999bf7d2de510860eefd7f38666146f2266bd7eab2474e9a22266a77
|
3 |
+
size 4980916048
|
model-00012-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:54cd51307229a07b9b6b6514746783d8ca2a8a14217a3eec7a7a593fcd7dd0dc
|
3 |
+
size 4980916048
|
model-00013-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:120b86b0bad7c9ae7840b302223a26525cdeeeba3ff098a2215ffa43ff0d7d93
|
3 |
+
size 3020522640
|
model-00014-of-00014.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5880f575e94ea288fbc0d9014548bc951e13678f2921194a629c217d0112752e
|
3 |
+
size 2059622544
|
model.safetensors.index.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|
preprocessor_config.json
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"crop_size": null,
|
3 |
+
"data_format": "channels_first",
|
4 |
+
"default_to_square": true,
|
5 |
+
"device": null,
|
6 |
+
"disable_grouping": null,
|
7 |
+
"do_center_crop": null,
|
8 |
+
"do_convert_rgb": true,
|
9 |
+
"do_normalize": true,
|
10 |
+
"do_rescale": true,
|
11 |
+
"do_resize": true,
|
12 |
+
"image_mean": [
|
13 |
+
0.5,
|
14 |
+
0.5,
|
15 |
+
0.5
|
16 |
+
],
|
17 |
+
"image_processor_type": "Llama4ImageProcessorFast",
|
18 |
+
"image_std": [
|
19 |
+
0.5,
|
20 |
+
0.5,
|
21 |
+
0.5
|
22 |
+
],
|
23 |
+
"input_data_format": null,
|
24 |
+
"max_patches": 16,
|
25 |
+
"processor_class": "Llama4Processor",
|
26 |
+
"resample": 2,
|
27 |
+
"rescale_factor": 0.00392156862745098,
|
28 |
+
"resize_to_max_canvas": false,
|
29 |
+
"return_tensors": null,
|
30 |
+
"size": {
|
31 |
+
"height": 336,
|
32 |
+
"width": 336
|
33 |
+
}
|
34 |
+
}
|
processor_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"fake_image_token": "<|image|>",
|
3 |
+
"image_token": "<|image|>",
|
4 |
+
"patch_size": 14,
|
5 |
+
"processor_class": "Llama4Processor"
|
6 |
+
}
|
recipe.yaml
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
default_stage:
|
2 |
+
default_modifiers:
|
3 |
+
GPTQModifier:
|
4 |
+
targets: [Linear]
|
5 |
+
ignore: ['re:.*lm_head', 're:.*self_attn', 're:.*router', 're:vision_model.*', 're:multi_modal_projector.*',
|
6 |
+
Llama4TextAttention]
|
7 |
+
scheme: W4A16
|
8 |
+
sequential_update: true
|
9 |
+
block_size: 128
|
10 |
+
dampening_frac: 0.01
|
11 |
+
offload_hessians: false
|
special_tokens_map.json
ADDED
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"bos_token": {
|
3 |
+
"content": "<|begin_of_text|>",
|
4 |
+
"lstrip": false,
|
5 |
+
"normalized": false,
|
6 |
+
"rstrip": false,
|
7 |
+
"single_word": false
|
8 |
+
},
|
9 |
+
"eos_token": {
|
10 |
+
"content": "<|eot|>",
|
11 |
+
"lstrip": false,
|
12 |
+
"normalized": false,
|
13 |
+
"rstrip": false,
|
14 |
+
"single_word": false
|
15 |
+
},
|
16 |
+
"pad_token": {
|
17 |
+
"content": "<|finetune_right_pad|>",
|
18 |
+
"lstrip": false,
|
19 |
+
"normalized": false,
|
20 |
+
"rstrip": false,
|
21 |
+
"single_word": false
|
22 |
+
}
|
23 |
+
}
|
tokenizer.json
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:172c9eb4beafc72601690da3ccfcede5c2e6806a8d5ec1fca33e22acea8023a4
|
3 |
+
size 27948578
|
tokenizer_config.json
ADDED
The diff for this file is too large to render.
See raw diff
|
|