cpatonn commited on
Commit
7900294
·
verified ·
1 Parent(s): c27aa70

Upload folder using huggingface_hub

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ images/cogito-v2-109b-benchmarks.png filter=lfs diff=lfs merge=lfs -text
37
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,258 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: llama4
3
+ library_name: transformers
4
+ base_model:
5
+ - meta-llama/Llama-4-Scout-17B-16E
6
+ ---
7
+
8
+ <p align="center">
9
+ <img src="images/deep-cogito-logo.png" alt="Logo" width="40%">
10
+ </p>
11
+
12
+
13
+ # Cogito v2 preview - 109B MoE
14
+
15
+ [Blog Post](https://www.deepcogito.com/research/cogito-v2-preview)
16
+
17
+ The Cogito v2 LLMs are instruction tuned generative models. All models are released under an open license for commercial use.
18
+
19
+ - Cogito v2 models are hybrid reasoning models. Each model can answer directly (standard LLM), or self-reflect before answering (like reasoning models).
20
+ - The LLMs are trained using **Iterated Distillation and Amplification (IDA)** - an scalable and efficient alignment strategy for superintelligence using iterative self-improvement.
21
+ - The models have been optimized for coding, STEM, instruction following and general helpfulness, and have significantly higher multilingual, coding and tool calling capabilities than size equivalent counterparts.
22
+ - In both standard and reasoning modes, Cogito v2-preview models outperform their size equivalent counterparts on common industry benchmarks.
23
+ - This model is trained in over 30 languages and supports long contexts (upto 10M tokens).
24
+
25
+ # Evaluations
26
+ Here is the model performance on some standard industry benchmarks:
27
+
28
+ <p align="left">
29
+ <img src="images/cogito-v2-109b-benchmarks.png" alt="Logo" width="90%">
30
+ </p>
31
+
32
+ For detailed evaluations, please refer to the [Blog Post](https://www.deepcogito.com/research/cogito-v2-preview).
33
+
34
+ # Usage
35
+ Here is a snippet below for usage with Transformers:
36
+
37
+ ```python
38
+ import transformers
39
+ import torch
40
+
41
+ model_id = "deepcogito/cogito-v2-preview-llama-109B-MoE"
42
+
43
+ pipeline = transformers.pipeline(
44
+ "text-generation",
45
+ model=model_id,
46
+ model_kwargs={"torch_dtype": torch.bfloat16},
47
+ device_map="auto",
48
+ )
49
+
50
+ messages = [
51
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
52
+ {"role": "user", "content": "Give me a short introduction to LLMs."},
53
+ ]
54
+
55
+ outputs = pipeline(
56
+ messages,
57
+ max_new_tokens=512,
58
+ )
59
+
60
+ print(outputs[0]["generated_text"][-1])
61
+ ```
62
+
63
+
64
+
65
+ ## Implementing extended thinking
66
+ - By default, the model will answer in the standard mode.
67
+ - To enable thinking, you can do any one of the two methods:
68
+ - Set `enable_thinking=True` while applying the chat template.
69
+ - Add a specific system prompt, along with prefilling the response with "\<think\>\n".
70
+
71
+ **NOTE: Unlike Cogito v1 models, we initiate the response with "\<think\>\n" at the beginning of every output when reasoning is enabled. This is because hybrid models can be brittle at times (<0.1% of the cases), and adding a "\<think\>\n" ensures that the model does indeed respect thinking.**
72
+
73
+ ### Method 1 - Set enable_thinking=True in the tokenizer
74
+ If you are using Huggingface tokenizers, then you can simply use add the argument `enable_thinking=True` to the tokenization (this option is added to the chat template).
75
+
76
+ Here is an example -
77
+ ```python
78
+ from transformers import AutoModelForCausalLM, AutoTokenizer
79
+
80
+ model_name = "deepcogito/cogito-v2-preview-llama-109B-MoE"
81
+
82
+ model = AutoModelForCausalLM.from_pretrained(
83
+ model_name,
84
+ torch_dtype="auto",
85
+ device_map="auto"
86
+ )
87
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
88
+
89
+ prompt = "Give me a short introduction to LLMs."
90
+ messages = [
91
+ {"role": "system", "content": "You are a pirate chatbot who always responds in pirate speak!"},
92
+ {"role": "user", "content": prompt}
93
+ ]
94
+
95
+ text = tokenizer.apply_chat_template(
96
+ messages,
97
+ tokenize=False,
98
+ add_generation_prompt=True,
99
+ enable_thinking=True
100
+ )
101
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
102
+
103
+ generated_ids = model.generate(
104
+ **model_inputs,
105
+ max_new_tokens=512
106
+ )
107
+ generated_ids = [
108
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
109
+ ]
110
+
111
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
112
+ print(response)
113
+ ```
114
+
115
+ ### Method 2 - Add a specific system prompt, along with prefilling the response with "\<think\>\n".
116
+ To enable thinking using this method, you need to do two parts -
117
+
118
+
119
+ Step 1 - Simply use this in the system prompt `system_instruction = 'Enable deep thinking subroutine.'`
120
+
121
+ If you already have a system_instruction, then use `system_instruction = 'Enable deep thinking subroutine.' + '\n\n' + system_instruction`.
122
+
123
+ Step 2 - Prefil the response with the tokens `"<think>\n"`.
124
+
125
+ Here is an example -
126
+
127
+ ```python
128
+ import transformers
129
+ import torch
130
+
131
+ model_name = "deepcogito/cogito-v2-preview-llama-109B-MoE"
132
+
133
+ model = AutoModelForCausalLM.from_pretrained(
134
+ model_name,
135
+ torch_dtype="auto",
136
+ device_map="auto"
137
+ )
138
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
139
+
140
+ # Step 1 - Add deep thinking instruction.
141
+ DEEP_THINKING_INSTRUCTION = "Enable deep thinking subroutine."
142
+
143
+ messages = [
144
+ {"role": "system", "content": DEEP_THINKING_INSTRUCTION},
145
+ {"role": "user", "content": "Write a bash script that takes a matrix represented as a string with format '[1,2],[3,4],[5,6]' and prints the transpose in the same format."},
146
+ ]
147
+
148
+ text = tokenizer.apply_chat_template(
149
+ messages,
150
+ tokenize=False,
151
+ add_generation_prompt=True
152
+ )
153
+
154
+ # Step 2 - Prefill response with "<think>\n".
155
+ text += "<think>\n"
156
+
157
+ # Now, continue as usual.
158
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
159
+
160
+ generated_ids = model.generate(
161
+ **model_inputs,
162
+ max_new_tokens=512
163
+ )
164
+ generated_ids = [
165
+ output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
166
+ ]
167
+
168
+ response = tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0]
169
+ print(response)
170
+ ```
171
+
172
+
173
+ Similarly, if you have a system prompt, you can append the `DEEP_THINKING_INSTRUCTION` to the beginning in this way -
174
+
175
+ ```python
176
+ DEEP_THINKING_INSTRUCTION = "Enable deep thinking subroutine."
177
+
178
+ system_prompt = "Reply to each prompt with only the actual code - no explanations."
179
+ prompt = "Write a bash script that takes a matrix represented as a string with format '[1,2],[3,4],[5,6]' and prints the transpose in the same format."
180
+
181
+ messages = [
182
+ {"role": "system", "content": DEEP_THINKING_INSTRUCTION + '\n\n' + system_prompt},
183
+ {"role": "user", "content": prompt}
184
+ ]
185
+ ```
186
+
187
+
188
+ # Tool Calling
189
+ Cogito models support tool calling (single, parallel, multiple and parallel_multiple) both in standard and extended thinking mode.
190
+
191
+ Here is a snippet -
192
+
193
+ ```python
194
+ # First, define a tool
195
+ def get_current_temperature(location: str) -> float:
196
+ """
197
+ Get the current temperature at a location.
198
+
199
+ Args:
200
+ location: The location to get the temperature for, in the format "City, Country"
201
+ Returns:
202
+ The current temperature at the specified location in the specified units, as a float.
203
+ """
204
+ return 22. # A real function should probably actually get the temperature!
205
+
206
+ # Next, create a chat and apply the chat template
207
+ messages = [
208
+ {"role": "user", "content": "Hey, what's the temperature in Paris right now?"}
209
+ ]
210
+
211
+ model_inputs = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True)
212
+
213
+ text = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True, tokenize=False)
214
+ inputs = tokenizer(text, return_tensors="pt", add_special_tokens=False).to(model.device)
215
+ outputs = model.generate(**inputs, max_new_tokens=512)
216
+ output_text = tokenizer.batch_decode(outputs)[0][len(text):]
217
+ print(output_text)
218
+ ```
219
+
220
+ This will result in the output -
221
+ ```
222
+ <tool_call>
223
+ {"name": "get_current_temperature", "arguments": {"location": "Paris, France"}}
224
+ </tool_call><|eot|>
225
+ ```
226
+
227
+ You can then generate text from this input as normal. If the model generates a tool call, you should add it to the chat like so:
228
+
229
+ ```python
230
+ tool_call = {"name": "get_current_temperature", "arguments": {"location": "Paris, France"}}
231
+ messages.append({"role": "assistant", "tool_calls": [{"type": "function", "function": tool_call}]})
232
+ ```
233
+
234
+ and then call the tool and append the result, with the `tool` role, like so:
235
+
236
+ ```python
237
+ messages.append({"role": "tool", "name": "get_current_temperature", "content": "22.0"})
238
+ ```
239
+
240
+ After that, you can `generate()` again to let the model use the tool result in the chat:
241
+
242
+ ```python
243
+ text = tokenizer.apply_chat_template(messages, tools=[get_current_temperature], add_generation_prompt=True, tokenize=False)
244
+ inputs = tokenizer(text, return_tensors="pt", add_special_tokens=False).to(model.device)
245
+ outputs = model.generate(**inputs, max_new_tokens=512)
246
+ output_text = tokenizer.batch_decode(outputs)[0][len(text):]
247
+ ```
248
+
249
+ This should result in the string -
250
+ ```
251
+ 'The current temperature in Paris is 22.0 degrees.<|eot|>'
252
+ ```
253
+
254
+ ## License
255
+ This repository and the model weights are licensed under the [Llama 4 Community License Agreement](https://github.com/meta-llama/llama-models/blob/main/models/llama4/LICENSE) (Llama models' default license agreement).
256
+
257
+ ## Contact
258
+ If you would like to reach out to our team, send an email to [[email protected]]([email protected]).
chat_template.jinja ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {{- bos_token }}
2
+ {%- if not tools is defined %}
3
+ {%- set tools = none %}
4
+ {%- endif %}
5
+ {%- if not enable_thinking is defined %}
6
+ {%- set enable_thinking = false %}
7
+ {%- endif %}
8
+
9
+ {#- This block extracts the system message, so we can slot it into the right place. #}
10
+ {%- if messages[0]['role'] == 'system' %}
11
+ {%- if messages[0]['content'] is string %}
12
+ {%- set system_message = messages[0]['content']|trim %}
13
+ {%- else %}
14
+ {%- set system_message = messages[0]['content'][0]['text']|trim %}
15
+ {%- endif %}
16
+ {%- set messages = messages[1:] %}
17
+ {%- else %}
18
+ {%- set system_message = "" %}
19
+ {%- endif %}
20
+
21
+ {#- Set the system message. If enable_thinking is true, add the "Enable deep thinking subroutine." #}
22
+ {%- if enable_thinking %}
23
+ {%- if system_message != "" %}
24
+ {%- set system_message = "Enable deep thinking subroutine.
25
+
26
+ " ~ system_message %}
27
+ {%- else %}
28
+ {%- set system_message = "Enable deep thinking subroutine." %}
29
+ {%- endif %}
30
+ {%- endif %}
31
+
32
+ {#- System message + tools #}
33
+ {%- if tools is not none or system_message != '' %}
34
+ {{- "<|header_start|>system<|header_end|>
35
+
36
+ " }}
37
+ {{- system_message }}
38
+ {%- if tools is not none %}
39
+ {%- if system_message != "" %}
40
+ {{- "
41
+
42
+ " }}
43
+ {%- endif %}
44
+ {{- "Available Tools:
45
+ " }}
46
+ {%- for t in tools %}
47
+ {{- t | tojson(indent=4) }}
48
+ {{- "
49
+
50
+ " }}
51
+ {%- endfor %}
52
+ {%- endif %}
53
+ {{- "<|eot|>" }}
54
+ {%- endif %}
55
+
56
+ {#- Rest of the messages #}
57
+ {%- for message in messages %}
58
+ {#- Case 1 - Usual, non tool related message. #}
59
+ {%- if not (message.role == "ipython" or message.role == "tool" or message.role == "tool_results" or (message.tool_calls is defined and message.tool_calls is not none)) %}
60
+ {{- '<|header_start|>' + message['role'] + '<|header_end|>
61
+
62
+ ' }}
63
+ {%- if message['content'] is string %}
64
+ {{- message['content'] }}
65
+ {%- else %}
66
+ {%- for content in message['content'] %}
67
+ {%- if content['type'] == 'image' %}
68
+ {{- '<|image|>' }}
69
+ {%- elif content['type'] == 'text' %}
70
+ {{- content['text'] }}
71
+ {%- endif %}
72
+ {%- endfor %}
73
+ {%- endif %}
74
+ {{- "<|eot|>" }}
75
+
76
+ {#- Case 2 - the response is from the assistant, but has a tool call returned. #}
77
+ {%- elif message.tool_calls is defined and message.tool_calls is not none %}
78
+ {{- "<|header_start|>assistant<|header_end|>
79
+
80
+ " }}
81
+ {%- if message['content'] is string %}
82
+ {{- message['content'] }}
83
+ {%- if message['content'] | trim != "" %}
84
+ {{- "
85
+
86
+ " }}
87
+ {%- endif %}
88
+ {%- else %}
89
+ {%- for content in message['content'] %}
90
+ {%- if content['type'] == 'image' %}
91
+ {{- '<|image|>' }}
92
+ {%- elif content['type'] == 'text' %}
93
+ {{- content['text'] }}
94
+ {%- if content['text'] | trim != "" %}
95
+ {{- "
96
+
97
+ " }}
98
+ {%- endif %}
99
+ {%- endif %}
100
+ {%- endfor %}
101
+ {%- endif %}
102
+ {{- "[" }}
103
+ {%- for tool_call in message.tool_calls %}
104
+ {%- if tool_call.function is defined %}
105
+ {%- set out = tool_call.function|tojson %}
106
+ {%- if not tool_call.id is defined %}
107
+ {{- out }}
108
+ {%- else %}
109
+ {{- out[:-1] }}
110
+ {{- ', "id": "' + tool_call.id + '"}' }}
111
+ {%- endif %}
112
+ {%- else %}
113
+ {{- tool_call|tojson }}
114
+ {%- endif %}
115
+ {%- if not loop.last %}
116
+ {{- ", " }}
117
+ {%- else %}
118
+ {{- "]<|eot|>" }}
119
+ {%- endif %}
120
+ {%- endfor %}
121
+
122
+ {#- Case 3 - the response is from a tool call. #}
123
+ {%- elif message.role == "ipython" or message["role"] == "tool_results" or message["role"] == "tool" %}
124
+ {{- "<|header_start|>ipython<|header_end|>
125
+
126
+ " }}
127
+ {%- if message.tool_call_id is defined and message.tool_call_id != '' %}
128
+ {{- '{"content": ' }}
129
+ {%- if message.content is mapping or (message.content is iterable and not message.content is string) %}
130
+ {{- message.content | tojson }}
131
+ {%- else %}
132
+ {{- '"' ~ message.content ~ '"' }}
133
+ {%- endif %}
134
+ {{- ', "call_id": "' ~ message.tool_call_id ~ '"}' }}
135
+ {%- else %}
136
+ {%- if message.content is mapping or (message.content is iterable and not message.content is string) %}
137
+ {{- message.content | tojson }}
138
+ {%- else %}
139
+ {{- message.content }}
140
+ {%- endif %}
141
+ {%- endif %}
142
+ {{- "<|eot|>" }}
143
+ {%- endif %}
144
+ {%- endfor %}
145
+ {%- if add_generation_prompt %}
146
+ {{- '<|header_start|>assistant<|header_end|>\n\n' }}
147
+ {%- if enable_thinking %}
148
+ {{- '<think>\n' }}
149
+ {%- endif %}
150
+ {%- endif %}
config.json ADDED
@@ -0,0 +1,662 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "Llama4ForConditionalGeneration"
4
+ ],
5
+ "boi_token_index": 200080,
6
+ "eoi_token_index": 200081,
7
+ "image_token_index": 200092,
8
+ "model_type": "llama4",
9
+ "quantization_config": {
10
+ "config_groups": {
11
+ "group_0": {
12
+ "input_activations": null,
13
+ "output_activations": null,
14
+ "targets": [
15
+ "Linear"
16
+ ],
17
+ "weights": {
18
+ "actorder": null,
19
+ "block_structure": null,
20
+ "dynamic": false,
21
+ "group_size": 128,
22
+ "num_bits": 4,
23
+ "observer": "minmax",
24
+ "observer_kwargs": {},
25
+ "strategy": "group",
26
+ "symmetric": true,
27
+ "type": "int"
28
+ }
29
+ }
30
+ },
31
+ "format": "pack-quantized",
32
+ "global_compression_ratio": null,
33
+ "ignore": [
34
+ "vision_model.patch_embedding.linear",
35
+ "vision_model.model.layers.0.self_attn.q_proj",
36
+ "vision_model.model.layers.0.self_attn.k_proj",
37
+ "vision_model.model.layers.0.self_attn.v_proj",
38
+ "vision_model.model.layers.0.self_attn.o_proj",
39
+ "vision_model.model.layers.0.mlp.fc1",
40
+ "vision_model.model.layers.0.mlp.fc2",
41
+ "vision_model.model.layers.1.self_attn.q_proj",
42
+ "vision_model.model.layers.1.self_attn.k_proj",
43
+ "vision_model.model.layers.1.self_attn.v_proj",
44
+ "vision_model.model.layers.1.self_attn.o_proj",
45
+ "vision_model.model.layers.1.mlp.fc1",
46
+ "vision_model.model.layers.1.mlp.fc2",
47
+ "vision_model.model.layers.2.self_attn.q_proj",
48
+ "vision_model.model.layers.2.self_attn.k_proj",
49
+ "vision_model.model.layers.2.self_attn.v_proj",
50
+ "vision_model.model.layers.2.self_attn.o_proj",
51
+ "vision_model.model.layers.2.mlp.fc1",
52
+ "vision_model.model.layers.2.mlp.fc2",
53
+ "vision_model.model.layers.3.self_attn.q_proj",
54
+ "vision_model.model.layers.3.self_attn.k_proj",
55
+ "vision_model.model.layers.3.self_attn.v_proj",
56
+ "vision_model.model.layers.3.self_attn.o_proj",
57
+ "vision_model.model.layers.3.mlp.fc1",
58
+ "vision_model.model.layers.3.mlp.fc2",
59
+ "vision_model.model.layers.4.self_attn.q_proj",
60
+ "vision_model.model.layers.4.self_attn.k_proj",
61
+ "vision_model.model.layers.4.self_attn.v_proj",
62
+ "vision_model.model.layers.4.self_attn.o_proj",
63
+ "vision_model.model.layers.4.mlp.fc1",
64
+ "vision_model.model.layers.4.mlp.fc2",
65
+ "vision_model.model.layers.5.self_attn.q_proj",
66
+ "vision_model.model.layers.5.self_attn.k_proj",
67
+ "vision_model.model.layers.5.self_attn.v_proj",
68
+ "vision_model.model.layers.5.self_attn.o_proj",
69
+ "vision_model.model.layers.5.mlp.fc1",
70
+ "vision_model.model.layers.5.mlp.fc2",
71
+ "vision_model.model.layers.6.self_attn.q_proj",
72
+ "vision_model.model.layers.6.self_attn.k_proj",
73
+ "vision_model.model.layers.6.self_attn.v_proj",
74
+ "vision_model.model.layers.6.self_attn.o_proj",
75
+ "vision_model.model.layers.6.mlp.fc1",
76
+ "vision_model.model.layers.6.mlp.fc2",
77
+ "vision_model.model.layers.7.self_attn.q_proj",
78
+ "vision_model.model.layers.7.self_attn.k_proj",
79
+ "vision_model.model.layers.7.self_attn.v_proj",
80
+ "vision_model.model.layers.7.self_attn.o_proj",
81
+ "vision_model.model.layers.7.mlp.fc1",
82
+ "vision_model.model.layers.7.mlp.fc2",
83
+ "vision_model.model.layers.8.self_attn.q_proj",
84
+ "vision_model.model.layers.8.self_attn.k_proj",
85
+ "vision_model.model.layers.8.self_attn.v_proj",
86
+ "vision_model.model.layers.8.self_attn.o_proj",
87
+ "vision_model.model.layers.8.mlp.fc1",
88
+ "vision_model.model.layers.8.mlp.fc2",
89
+ "vision_model.model.layers.9.self_attn.q_proj",
90
+ "vision_model.model.layers.9.self_attn.k_proj",
91
+ "vision_model.model.layers.9.self_attn.v_proj",
92
+ "vision_model.model.layers.9.self_attn.o_proj",
93
+ "vision_model.model.layers.9.mlp.fc1",
94
+ "vision_model.model.layers.9.mlp.fc2",
95
+ "vision_model.model.layers.10.self_attn.q_proj",
96
+ "vision_model.model.layers.10.self_attn.k_proj",
97
+ "vision_model.model.layers.10.self_attn.v_proj",
98
+ "vision_model.model.layers.10.self_attn.o_proj",
99
+ "vision_model.model.layers.10.mlp.fc1",
100
+ "vision_model.model.layers.10.mlp.fc2",
101
+ "vision_model.model.layers.11.self_attn.q_proj",
102
+ "vision_model.model.layers.11.self_attn.k_proj",
103
+ "vision_model.model.layers.11.self_attn.v_proj",
104
+ "vision_model.model.layers.11.self_attn.o_proj",
105
+ "vision_model.model.layers.11.mlp.fc1",
106
+ "vision_model.model.layers.11.mlp.fc2",
107
+ "vision_model.model.layers.12.self_attn.q_proj",
108
+ "vision_model.model.layers.12.self_attn.k_proj",
109
+ "vision_model.model.layers.12.self_attn.v_proj",
110
+ "vision_model.model.layers.12.self_attn.o_proj",
111
+ "vision_model.model.layers.12.mlp.fc1",
112
+ "vision_model.model.layers.12.mlp.fc2",
113
+ "vision_model.model.layers.13.self_attn.q_proj",
114
+ "vision_model.model.layers.13.self_attn.k_proj",
115
+ "vision_model.model.layers.13.self_attn.v_proj",
116
+ "vision_model.model.layers.13.self_attn.o_proj",
117
+ "vision_model.model.layers.13.mlp.fc1",
118
+ "vision_model.model.layers.13.mlp.fc2",
119
+ "vision_model.model.layers.14.self_attn.q_proj",
120
+ "vision_model.model.layers.14.self_attn.k_proj",
121
+ "vision_model.model.layers.14.self_attn.v_proj",
122
+ "vision_model.model.layers.14.self_attn.o_proj",
123
+ "vision_model.model.layers.14.mlp.fc1",
124
+ "vision_model.model.layers.14.mlp.fc2",
125
+ "vision_model.model.layers.15.self_attn.q_proj",
126
+ "vision_model.model.layers.15.self_attn.k_proj",
127
+ "vision_model.model.layers.15.self_attn.v_proj",
128
+ "vision_model.model.layers.15.self_attn.o_proj",
129
+ "vision_model.model.layers.15.mlp.fc1",
130
+ "vision_model.model.layers.15.mlp.fc2",
131
+ "vision_model.model.layers.16.self_attn.q_proj",
132
+ "vision_model.model.layers.16.self_attn.k_proj",
133
+ "vision_model.model.layers.16.self_attn.v_proj",
134
+ "vision_model.model.layers.16.self_attn.o_proj",
135
+ "vision_model.model.layers.16.mlp.fc1",
136
+ "vision_model.model.layers.16.mlp.fc2",
137
+ "vision_model.model.layers.17.self_attn.q_proj",
138
+ "vision_model.model.layers.17.self_attn.k_proj",
139
+ "vision_model.model.layers.17.self_attn.v_proj",
140
+ "vision_model.model.layers.17.self_attn.o_proj",
141
+ "vision_model.model.layers.17.mlp.fc1",
142
+ "vision_model.model.layers.17.mlp.fc2",
143
+ "vision_model.model.layers.18.self_attn.q_proj",
144
+ "vision_model.model.layers.18.self_attn.k_proj",
145
+ "vision_model.model.layers.18.self_attn.v_proj",
146
+ "vision_model.model.layers.18.self_attn.o_proj",
147
+ "vision_model.model.layers.18.mlp.fc1",
148
+ "vision_model.model.layers.18.mlp.fc2",
149
+ "vision_model.model.layers.19.self_attn.q_proj",
150
+ "vision_model.model.layers.19.self_attn.k_proj",
151
+ "vision_model.model.layers.19.self_attn.v_proj",
152
+ "vision_model.model.layers.19.self_attn.o_proj",
153
+ "vision_model.model.layers.19.mlp.fc1",
154
+ "vision_model.model.layers.19.mlp.fc2",
155
+ "vision_model.model.layers.20.self_attn.q_proj",
156
+ "vision_model.model.layers.20.self_attn.k_proj",
157
+ "vision_model.model.layers.20.self_attn.v_proj",
158
+ "vision_model.model.layers.20.self_attn.o_proj",
159
+ "vision_model.model.layers.20.mlp.fc1",
160
+ "vision_model.model.layers.20.mlp.fc2",
161
+ "vision_model.model.layers.21.self_attn.q_proj",
162
+ "vision_model.model.layers.21.self_attn.k_proj",
163
+ "vision_model.model.layers.21.self_attn.v_proj",
164
+ "vision_model.model.layers.21.self_attn.o_proj",
165
+ "vision_model.model.layers.21.mlp.fc1",
166
+ "vision_model.model.layers.21.mlp.fc2",
167
+ "vision_model.model.layers.22.self_attn.q_proj",
168
+ "vision_model.model.layers.22.self_attn.k_proj",
169
+ "vision_model.model.layers.22.self_attn.v_proj",
170
+ "vision_model.model.layers.22.self_attn.o_proj",
171
+ "vision_model.model.layers.22.mlp.fc1",
172
+ "vision_model.model.layers.22.mlp.fc2",
173
+ "vision_model.model.layers.23.self_attn.q_proj",
174
+ "vision_model.model.layers.23.self_attn.k_proj",
175
+ "vision_model.model.layers.23.self_attn.v_proj",
176
+ "vision_model.model.layers.23.self_attn.o_proj",
177
+ "vision_model.model.layers.23.mlp.fc1",
178
+ "vision_model.model.layers.23.mlp.fc2",
179
+ "vision_model.model.layers.24.self_attn.q_proj",
180
+ "vision_model.model.layers.24.self_attn.k_proj",
181
+ "vision_model.model.layers.24.self_attn.v_proj",
182
+ "vision_model.model.layers.24.self_attn.o_proj",
183
+ "vision_model.model.layers.24.mlp.fc1",
184
+ "vision_model.model.layers.24.mlp.fc2",
185
+ "vision_model.model.layers.25.self_attn.q_proj",
186
+ "vision_model.model.layers.25.self_attn.k_proj",
187
+ "vision_model.model.layers.25.self_attn.v_proj",
188
+ "vision_model.model.layers.25.self_attn.o_proj",
189
+ "vision_model.model.layers.25.mlp.fc1",
190
+ "vision_model.model.layers.25.mlp.fc2",
191
+ "vision_model.model.layers.26.self_attn.q_proj",
192
+ "vision_model.model.layers.26.self_attn.k_proj",
193
+ "vision_model.model.layers.26.self_attn.v_proj",
194
+ "vision_model.model.layers.26.self_attn.o_proj",
195
+ "vision_model.model.layers.26.mlp.fc1",
196
+ "vision_model.model.layers.26.mlp.fc2",
197
+ "vision_model.model.layers.27.self_attn.q_proj",
198
+ "vision_model.model.layers.27.self_attn.k_proj",
199
+ "vision_model.model.layers.27.self_attn.v_proj",
200
+ "vision_model.model.layers.27.self_attn.o_proj",
201
+ "vision_model.model.layers.27.mlp.fc1",
202
+ "vision_model.model.layers.27.mlp.fc2",
203
+ "vision_model.model.layers.28.self_attn.q_proj",
204
+ "vision_model.model.layers.28.self_attn.k_proj",
205
+ "vision_model.model.layers.28.self_attn.v_proj",
206
+ "vision_model.model.layers.28.self_attn.o_proj",
207
+ "vision_model.model.layers.28.mlp.fc1",
208
+ "vision_model.model.layers.28.mlp.fc2",
209
+ "vision_model.model.layers.29.self_attn.q_proj",
210
+ "vision_model.model.layers.29.self_attn.k_proj",
211
+ "vision_model.model.layers.29.self_attn.v_proj",
212
+ "vision_model.model.layers.29.self_attn.o_proj",
213
+ "vision_model.model.layers.29.mlp.fc1",
214
+ "vision_model.model.layers.29.mlp.fc2",
215
+ "vision_model.model.layers.30.self_attn.q_proj",
216
+ "vision_model.model.layers.30.self_attn.k_proj",
217
+ "vision_model.model.layers.30.self_attn.v_proj",
218
+ "vision_model.model.layers.30.self_attn.o_proj",
219
+ "vision_model.model.layers.30.mlp.fc1",
220
+ "vision_model.model.layers.30.mlp.fc2",
221
+ "vision_model.model.layers.31.self_attn.q_proj",
222
+ "vision_model.model.layers.31.self_attn.k_proj",
223
+ "vision_model.model.layers.31.self_attn.v_proj",
224
+ "vision_model.model.layers.31.self_attn.o_proj",
225
+ "vision_model.model.layers.31.mlp.fc1",
226
+ "vision_model.model.layers.31.mlp.fc2",
227
+ "vision_model.model.layers.32.self_attn.q_proj",
228
+ "vision_model.model.layers.32.self_attn.k_proj",
229
+ "vision_model.model.layers.32.self_attn.v_proj",
230
+ "vision_model.model.layers.32.self_attn.o_proj",
231
+ "vision_model.model.layers.32.mlp.fc1",
232
+ "vision_model.model.layers.32.mlp.fc2",
233
+ "vision_model.model.layers.33.self_attn.q_proj",
234
+ "vision_model.model.layers.33.self_attn.k_proj",
235
+ "vision_model.model.layers.33.self_attn.v_proj",
236
+ "vision_model.model.layers.33.self_attn.o_proj",
237
+ "vision_model.model.layers.33.mlp.fc1",
238
+ "vision_model.model.layers.33.mlp.fc2",
239
+ "vision_model.vision_adapter.mlp.fc1",
240
+ "vision_model.vision_adapter.mlp.fc2",
241
+ "multi_modal_projector.linear_1",
242
+ "language_model.model.layers.0.self_attn.q_proj",
243
+ "language_model.model.layers.0.self_attn.k_proj",
244
+ "language_model.model.layers.0.self_attn.v_proj",
245
+ "language_model.model.layers.0.self_attn.o_proj",
246
+ "language_model.model.layers.1.self_attn.q_proj",
247
+ "language_model.model.layers.1.self_attn.k_proj",
248
+ "language_model.model.layers.1.self_attn.v_proj",
249
+ "language_model.model.layers.1.self_attn.o_proj",
250
+ "language_model.model.layers.2.self_attn.q_proj",
251
+ "language_model.model.layers.2.self_attn.k_proj",
252
+ "language_model.model.layers.2.self_attn.v_proj",
253
+ "language_model.model.layers.2.self_attn.o_proj",
254
+ "language_model.model.layers.3.self_attn.q_proj",
255
+ "language_model.model.layers.3.self_attn.k_proj",
256
+ "language_model.model.layers.3.self_attn.v_proj",
257
+ "language_model.model.layers.3.self_attn.o_proj",
258
+ "language_model.model.layers.4.self_attn.q_proj",
259
+ "language_model.model.layers.4.self_attn.k_proj",
260
+ "language_model.model.layers.4.self_attn.v_proj",
261
+ "language_model.model.layers.4.self_attn.o_proj",
262
+ "language_model.model.layers.5.self_attn.q_proj",
263
+ "language_model.model.layers.5.self_attn.k_proj",
264
+ "language_model.model.layers.5.self_attn.v_proj",
265
+ "language_model.model.layers.5.self_attn.o_proj",
266
+ "language_model.model.layers.6.self_attn.q_proj",
267
+ "language_model.model.layers.6.self_attn.k_proj",
268
+ "language_model.model.layers.6.self_attn.v_proj",
269
+ "language_model.model.layers.6.self_attn.o_proj",
270
+ "language_model.model.layers.7.self_attn.q_proj",
271
+ "language_model.model.layers.7.self_attn.k_proj",
272
+ "language_model.model.layers.7.self_attn.v_proj",
273
+ "language_model.model.layers.7.self_attn.o_proj",
274
+ "language_model.model.layers.8.self_attn.q_proj",
275
+ "language_model.model.layers.8.self_attn.k_proj",
276
+ "language_model.model.layers.8.self_attn.v_proj",
277
+ "language_model.model.layers.8.self_attn.o_proj",
278
+ "language_model.model.layers.9.self_attn.q_proj",
279
+ "language_model.model.layers.9.self_attn.k_proj",
280
+ "language_model.model.layers.9.self_attn.v_proj",
281
+ "language_model.model.layers.9.self_attn.o_proj",
282
+ "language_model.model.layers.10.self_attn.q_proj",
283
+ "language_model.model.layers.10.self_attn.k_proj",
284
+ "language_model.model.layers.10.self_attn.v_proj",
285
+ "language_model.model.layers.10.self_attn.o_proj",
286
+ "language_model.model.layers.11.self_attn.q_proj",
287
+ "language_model.model.layers.11.self_attn.k_proj",
288
+ "language_model.model.layers.11.self_attn.v_proj",
289
+ "language_model.model.layers.11.self_attn.o_proj",
290
+ "language_model.model.layers.12.self_attn.q_proj",
291
+ "language_model.model.layers.12.self_attn.k_proj",
292
+ "language_model.model.layers.12.self_attn.v_proj",
293
+ "language_model.model.layers.12.self_attn.o_proj",
294
+ "language_model.model.layers.13.self_attn.q_proj",
295
+ "language_model.model.layers.13.self_attn.k_proj",
296
+ "language_model.model.layers.13.self_attn.v_proj",
297
+ "language_model.model.layers.13.self_attn.o_proj",
298
+ "language_model.model.layers.14.self_attn.q_proj",
299
+ "language_model.model.layers.14.self_attn.k_proj",
300
+ "language_model.model.layers.14.self_attn.v_proj",
301
+ "language_model.model.layers.14.self_attn.o_proj",
302
+ "language_model.model.layers.15.self_attn.q_proj",
303
+ "language_model.model.layers.15.self_attn.k_proj",
304
+ "language_model.model.layers.15.self_attn.v_proj",
305
+ "language_model.model.layers.15.self_attn.o_proj",
306
+ "language_model.model.layers.16.self_attn.q_proj",
307
+ "language_model.model.layers.16.self_attn.k_proj",
308
+ "language_model.model.layers.16.self_attn.v_proj",
309
+ "language_model.model.layers.16.self_attn.o_proj",
310
+ "language_model.model.layers.17.self_attn.q_proj",
311
+ "language_model.model.layers.17.self_attn.k_proj",
312
+ "language_model.model.layers.17.self_attn.v_proj",
313
+ "language_model.model.layers.17.self_attn.o_proj",
314
+ "language_model.model.layers.18.self_attn.q_proj",
315
+ "language_model.model.layers.18.self_attn.k_proj",
316
+ "language_model.model.layers.18.self_attn.v_proj",
317
+ "language_model.model.layers.18.self_attn.o_proj",
318
+ "language_model.model.layers.19.self_attn.q_proj",
319
+ "language_model.model.layers.19.self_attn.k_proj",
320
+ "language_model.model.layers.19.self_attn.v_proj",
321
+ "language_model.model.layers.19.self_attn.o_proj",
322
+ "language_model.model.layers.20.self_attn.q_proj",
323
+ "language_model.model.layers.20.self_attn.k_proj",
324
+ "language_model.model.layers.20.self_attn.v_proj",
325
+ "language_model.model.layers.20.self_attn.o_proj",
326
+ "language_model.model.layers.21.self_attn.q_proj",
327
+ "language_model.model.layers.21.self_attn.k_proj",
328
+ "language_model.model.layers.21.self_attn.v_proj",
329
+ "language_model.model.layers.21.self_attn.o_proj",
330
+ "language_model.model.layers.22.self_attn.q_proj",
331
+ "language_model.model.layers.22.self_attn.k_proj",
332
+ "language_model.model.layers.22.self_attn.v_proj",
333
+ "language_model.model.layers.22.self_attn.o_proj",
334
+ "language_model.model.layers.23.self_attn.q_proj",
335
+ "language_model.model.layers.23.self_attn.k_proj",
336
+ "language_model.model.layers.23.self_attn.v_proj",
337
+ "language_model.model.layers.23.self_attn.o_proj",
338
+ "language_model.model.layers.24.self_attn.q_proj",
339
+ "language_model.model.layers.24.self_attn.k_proj",
340
+ "language_model.model.layers.24.self_attn.v_proj",
341
+ "language_model.model.layers.24.self_attn.o_proj",
342
+ "language_model.model.layers.25.self_attn.q_proj",
343
+ "language_model.model.layers.25.self_attn.k_proj",
344
+ "language_model.model.layers.25.self_attn.v_proj",
345
+ "language_model.model.layers.25.self_attn.o_proj",
346
+ "language_model.model.layers.26.self_attn.q_proj",
347
+ "language_model.model.layers.26.self_attn.k_proj",
348
+ "language_model.model.layers.26.self_attn.v_proj",
349
+ "language_model.model.layers.26.self_attn.o_proj",
350
+ "language_model.model.layers.27.self_attn.q_proj",
351
+ "language_model.model.layers.27.self_attn.k_proj",
352
+ "language_model.model.layers.27.self_attn.v_proj",
353
+ "language_model.model.layers.27.self_attn.o_proj",
354
+ "language_model.model.layers.28.self_attn.q_proj",
355
+ "language_model.model.layers.28.self_attn.k_proj",
356
+ "language_model.model.layers.28.self_attn.v_proj",
357
+ "language_model.model.layers.28.self_attn.o_proj",
358
+ "language_model.model.layers.29.self_attn.q_proj",
359
+ "language_model.model.layers.29.self_attn.k_proj",
360
+ "language_model.model.layers.29.self_attn.v_proj",
361
+ "language_model.model.layers.29.self_attn.o_proj",
362
+ "language_model.model.layers.30.self_attn.q_proj",
363
+ "language_model.model.layers.30.self_attn.k_proj",
364
+ "language_model.model.layers.30.self_attn.v_proj",
365
+ "language_model.model.layers.30.self_attn.o_proj",
366
+ "language_model.model.layers.31.self_attn.q_proj",
367
+ "language_model.model.layers.31.self_attn.k_proj",
368
+ "language_model.model.layers.31.self_attn.v_proj",
369
+ "language_model.model.layers.31.self_attn.o_proj",
370
+ "language_model.model.layers.32.self_attn.q_proj",
371
+ "language_model.model.layers.32.self_attn.k_proj",
372
+ "language_model.model.layers.32.self_attn.v_proj",
373
+ "language_model.model.layers.32.self_attn.o_proj",
374
+ "language_model.model.layers.33.self_attn.q_proj",
375
+ "language_model.model.layers.33.self_attn.k_proj",
376
+ "language_model.model.layers.33.self_attn.v_proj",
377
+ "language_model.model.layers.33.self_attn.o_proj",
378
+ "language_model.model.layers.34.self_attn.q_proj",
379
+ "language_model.model.layers.34.self_attn.k_proj",
380
+ "language_model.model.layers.34.self_attn.v_proj",
381
+ "language_model.model.layers.34.self_attn.o_proj",
382
+ "language_model.model.layers.35.self_attn.q_proj",
383
+ "language_model.model.layers.35.self_attn.k_proj",
384
+ "language_model.model.layers.35.self_attn.v_proj",
385
+ "language_model.model.layers.35.self_attn.o_proj",
386
+ "language_model.model.layers.36.self_attn.q_proj",
387
+ "language_model.model.layers.36.self_attn.k_proj",
388
+ "language_model.model.layers.36.self_attn.v_proj",
389
+ "language_model.model.layers.36.self_attn.o_proj",
390
+ "language_model.model.layers.37.self_attn.q_proj",
391
+ "language_model.model.layers.37.self_attn.k_proj",
392
+ "language_model.model.layers.37.self_attn.v_proj",
393
+ "language_model.model.layers.37.self_attn.o_proj",
394
+ "language_model.model.layers.38.self_attn.q_proj",
395
+ "language_model.model.layers.38.self_attn.k_proj",
396
+ "language_model.model.layers.38.self_attn.v_proj",
397
+ "language_model.model.layers.38.self_attn.o_proj",
398
+ "language_model.model.layers.39.self_attn.q_proj",
399
+ "language_model.model.layers.39.self_attn.k_proj",
400
+ "language_model.model.layers.39.self_attn.v_proj",
401
+ "language_model.model.layers.39.self_attn.o_proj",
402
+ "language_model.model.layers.40.self_attn.q_proj",
403
+ "language_model.model.layers.40.self_attn.k_proj",
404
+ "language_model.model.layers.40.self_attn.v_proj",
405
+ "language_model.model.layers.40.self_attn.o_proj",
406
+ "language_model.model.layers.41.self_attn.q_proj",
407
+ "language_model.model.layers.41.self_attn.k_proj",
408
+ "language_model.model.layers.41.self_attn.v_proj",
409
+ "language_model.model.layers.41.self_attn.o_proj",
410
+ "language_model.model.layers.42.self_attn.q_proj",
411
+ "language_model.model.layers.42.self_attn.k_proj",
412
+ "language_model.model.layers.42.self_attn.v_proj",
413
+ "language_model.model.layers.42.self_attn.o_proj",
414
+ "language_model.model.layers.43.self_attn.q_proj",
415
+ "language_model.model.layers.43.self_attn.k_proj",
416
+ "language_model.model.layers.43.self_attn.v_proj",
417
+ "language_model.model.layers.43.self_attn.o_proj",
418
+ "language_model.model.layers.44.self_attn.q_proj",
419
+ "language_model.model.layers.44.self_attn.k_proj",
420
+ "language_model.model.layers.44.self_attn.v_proj",
421
+ "language_model.model.layers.44.self_attn.o_proj",
422
+ "language_model.model.layers.45.self_attn.q_proj",
423
+ "language_model.model.layers.45.self_attn.k_proj",
424
+ "language_model.model.layers.45.self_attn.v_proj",
425
+ "language_model.model.layers.45.self_attn.o_proj",
426
+ "language_model.model.layers.46.self_attn.q_proj",
427
+ "language_model.model.layers.46.self_attn.k_proj",
428
+ "language_model.model.layers.46.self_attn.v_proj",
429
+ "language_model.model.layers.46.self_attn.o_proj",
430
+ "language_model.model.layers.47.self_attn.q_proj",
431
+ "language_model.model.layers.47.self_attn.k_proj",
432
+ "language_model.model.layers.47.self_attn.v_proj",
433
+ "language_model.model.layers.47.self_attn.o_proj",
434
+ "language_model.lm_head"
435
+ ],
436
+ "kv_cache_scheme": null,
437
+ "quant_method": "compressed-tensors",
438
+ "quantization_status": "compressed"
439
+ },
440
+ "text_config": {
441
+ "attention_bias": false,
442
+ "attention_chunk_size": 8192,
443
+ "attention_dropout": 0.0,
444
+ "attn_scale": 0.1,
445
+ "attn_temperature_tuning": true,
446
+ "bos_token_id": 200000,
447
+ "eos_token_id": [
448
+ 200001,
449
+ 200007,
450
+ 200008
451
+ ],
452
+ "floor_scale": 8192,
453
+ "for_llm_compressor": false,
454
+ "head_dim": 128,
455
+ "hidden_act": "silu",
456
+ "hidden_size": 5120,
457
+ "initializer_range": 0.02,
458
+ "interleave_moe_layer_step": 1,
459
+ "intermediate_size": 8192,
460
+ "intermediate_size_mlp": 16384,
461
+ "layer_types": [
462
+ "chunked_attention",
463
+ "chunked_attention",
464
+ "chunked_attention",
465
+ "full_attention",
466
+ "chunked_attention",
467
+ "chunked_attention",
468
+ "chunked_attention",
469
+ "full_attention",
470
+ "chunked_attention",
471
+ "chunked_attention",
472
+ "chunked_attention",
473
+ "full_attention",
474
+ "chunked_attention",
475
+ "chunked_attention",
476
+ "chunked_attention",
477
+ "full_attention",
478
+ "chunked_attention",
479
+ "chunked_attention",
480
+ "chunked_attention",
481
+ "full_attention",
482
+ "chunked_attention",
483
+ "chunked_attention",
484
+ "chunked_attention",
485
+ "full_attention",
486
+ "chunked_attention",
487
+ "chunked_attention",
488
+ "chunked_attention",
489
+ "full_attention",
490
+ "chunked_attention",
491
+ "chunked_attention",
492
+ "chunked_attention",
493
+ "full_attention",
494
+ "chunked_attention",
495
+ "chunked_attention",
496
+ "chunked_attention",
497
+ "full_attention",
498
+ "chunked_attention",
499
+ "chunked_attention",
500
+ "chunked_attention",
501
+ "full_attention",
502
+ "chunked_attention",
503
+ "chunked_attention",
504
+ "chunked_attention",
505
+ "full_attention",
506
+ "chunked_attention",
507
+ "chunked_attention",
508
+ "chunked_attention",
509
+ "full_attention"
510
+ ],
511
+ "max_position_embeddings": 262144,
512
+ "model_type": "llama4_text",
513
+ "moe_layers": [
514
+ 0,
515
+ 1,
516
+ 2,
517
+ 3,
518
+ 4,
519
+ 5,
520
+ 6,
521
+ 7,
522
+ 8,
523
+ 9,
524
+ 10,
525
+ 11,
526
+ 12,
527
+ 13,
528
+ 14,
529
+ 15,
530
+ 16,
531
+ 17,
532
+ 18,
533
+ 19,
534
+ 20,
535
+ 21,
536
+ 22,
537
+ 23,
538
+ 24,
539
+ 25,
540
+ 26,
541
+ 27,
542
+ 28,
543
+ 29,
544
+ 30,
545
+ 31,
546
+ 32,
547
+ 33,
548
+ 34,
549
+ 35,
550
+ 36,
551
+ 37,
552
+ 38,
553
+ 39,
554
+ 40,
555
+ 41,
556
+ 42,
557
+ 43,
558
+ 44,
559
+ 45,
560
+ 46,
561
+ 47
562
+ ],
563
+ "no_rope_layers": [
564
+ 1,
565
+ 1,
566
+ 1,
567
+ 0,
568
+ 1,
569
+ 1,
570
+ 1,
571
+ 0,
572
+ 1,
573
+ 1,
574
+ 1,
575
+ 0,
576
+ 1,
577
+ 1,
578
+ 1,
579
+ 0,
580
+ 1,
581
+ 1,
582
+ 1,
583
+ 0,
584
+ 1,
585
+ 1,
586
+ 1,
587
+ 0,
588
+ 1,
589
+ 1,
590
+ 1,
591
+ 0,
592
+ 1,
593
+ 1,
594
+ 1,
595
+ 0,
596
+ 1,
597
+ 1,
598
+ 1,
599
+ 0,
600
+ 1,
601
+ 1,
602
+ 1,
603
+ 0,
604
+ 1,
605
+ 1,
606
+ 1,
607
+ 0,
608
+ 1,
609
+ 1,
610
+ 1,
611
+ 0
612
+ ],
613
+ "num_attention_heads": 40,
614
+ "num_experts_per_tok": 1,
615
+ "num_hidden_layers": 48,
616
+ "num_key_value_heads": 8,
617
+ "num_local_experts": 16,
618
+ "output_router_logits": false,
619
+ "pad_token_id": 200018,
620
+ "rms_norm_eps": 1e-05,
621
+ "rope_scaling": {
622
+ "factor": 16.0,
623
+ "high_freq_factor": 1.0,
624
+ "low_freq_factor": 1.0,
625
+ "original_max_position_embeddings": 8192,
626
+ "rope_type": "llama3"
627
+ },
628
+ "rope_theta": 500000.0,
629
+ "router_aux_loss_coef": 0.001,
630
+ "router_jitter_noise": 0.0,
631
+ "torch_dtype": "bfloat16",
632
+ "use_cache": true,
633
+ "use_qk_norm": true,
634
+ "vocab_size": 201135
635
+ },
636
+ "tie_word_embeddings": false,
637
+ "torch_dtype": "bfloat16",
638
+ "transformers_version": "4.54.1",
639
+ "vision_config": {
640
+ "attention_dropout": 0.0,
641
+ "hidden_act": "gelu",
642
+ "hidden_size": 1408,
643
+ "image_size": 336,
644
+ "initializer_range": 0.02,
645
+ "intermediate_size": 5632,
646
+ "model_type": "llama4_vision_model",
647
+ "multi_modal_projector_bias": false,
648
+ "norm_eps": 1e-05,
649
+ "num_attention_heads": 16,
650
+ "num_channels": 3,
651
+ "num_hidden_layers": 34,
652
+ "patch_size": 14,
653
+ "pixel_shuffle_ratio": 0.5,
654
+ "projector_dropout": 0.0,
655
+ "projector_input_dim": 4096,
656
+ "projector_output_dim": 4096,
657
+ "rope_theta": 10000,
658
+ "vision_feature_layer": -1,
659
+ "vision_feature_select_strategy": "default",
660
+ "vision_output_dim": 4096
661
+ }
662
+ }
generation_config.json ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 200000,
4
+ "eos_token_id": [
5
+ 200001,
6
+ 200007,
7
+ 200008
8
+ ],
9
+ "pad_token_id": 200018,
10
+ "transformers_version": "4.54.1"
11
+ }
get_size.py ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os, json
2
+
3
+ # 1) load your existing index
4
+ index_path = "model.safetensors.index.json"
5
+ with open(index_path, "r") as f:
6
+ idx = json.load(f)
7
+
8
+ # 2) find all the shards
9
+ shards = sorted(f for f in os.listdir(".")
10
+ if f.startswith("model-") and f.endswith(".safetensors"))
11
+
12
+ # 3) sum their sizes
13
+ total_size = sum(os.path.getsize(s) for s in shards)
14
+ print(f"Found {len(shards)} shards, total_size = {total_size} bytes")
images/README ADDED
@@ -0,0 +1 @@
 
 
1
+ Directory for images associated with the model.
images/cogito-v2-109b-benchmarks.png ADDED

Git LFS Details

  • SHA256: b55cb70cf26c01b4bfbe2f7b006bae249cacb0bb318c9a9b4f157b6ce7373c32
  • Pointer size: 131 Bytes
  • Size of remote file: 279 kB
images/deep-cogito-logo.png ADDED
model-00001-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55183a0814b59a545bae3fca480e45b37c6ebdb5e7273fbb8d5bf61cc29fcf7b
3
+ size 4989289528
model-00002-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9431faffe2702aa668774db9f637dd2bcf502805b0c5ccdf3104b2f49cc027ce
3
+ size 4959308680
model-00003-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b55e715913966c598035e1b5fbfd334cfedd6c3bb9b55bbce9931c1dcc11e79f
3
+ size 4989434120
model-00004-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:55737b49d896dd40ede5c567c5355095dc81ce9414b6e5127b908f1ddf2e73cd
3
+ size 4990090304
model-00005-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:dfa2f3e5c8b10553bfaa00b87d408293f56adab075707bb4e130f88414f6f022
3
+ size 4980916048
model-00006-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f43b6af23fcb97c89dfa33a253069d74fdcf42f9c0428c84055eef705d3f8e2
3
+ size 4980916048
model-00007-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e3a625c5ac2631dfaf5b705e0ff88c12b0c101828b17961268111a67ff5be22
3
+ size 4980916048
model-00008-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2732f629c6b7bd9f23143c87977a8b89ee8b96cece1c2a67fc06242c2c241feb
3
+ size 4980916048
model-00009-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff473bccdd6d79041ceb42a35dfa6451a523978a0be024b4507c0a8a25be1d07
3
+ size 4980916048
model-00010-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2ce66771aa3547f51cc64acf5169eab90aa0f060bee745594e0c8669d812365f
3
+ size 4980916048
model-00011-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3fd97df8999bf7d2de510860eefd7f38666146f2266bd7eab2474e9a22266a77
3
+ size 4980916048
model-00012-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54cd51307229a07b9b6b6514746783d8ca2a8a14217a3eec7a7a593fcd7dd0dc
3
+ size 4980916048
model-00013-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:120b86b0bad7c9ae7840b302223a26525cdeeeba3ff098a2215ffa43ff0d7d93
3
+ size 3020522640
model-00014-of-00014.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5880f575e94ea288fbc0d9014548bc951e13678f2921194a629c217d0112752e
3
+ size 2059622544
model.safetensors.index.json ADDED
The diff for this file is too large to render. See raw diff
 
preprocessor_config.json ADDED
@@ -0,0 +1,34 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "crop_size": null,
3
+ "data_format": "channels_first",
4
+ "default_to_square": true,
5
+ "device": null,
6
+ "disable_grouping": null,
7
+ "do_center_crop": null,
8
+ "do_convert_rgb": true,
9
+ "do_normalize": true,
10
+ "do_rescale": true,
11
+ "do_resize": true,
12
+ "image_mean": [
13
+ 0.5,
14
+ 0.5,
15
+ 0.5
16
+ ],
17
+ "image_processor_type": "Llama4ImageProcessorFast",
18
+ "image_std": [
19
+ 0.5,
20
+ 0.5,
21
+ 0.5
22
+ ],
23
+ "input_data_format": null,
24
+ "max_patches": 16,
25
+ "processor_class": "Llama4Processor",
26
+ "resample": 2,
27
+ "rescale_factor": 0.00392156862745098,
28
+ "resize_to_max_canvas": false,
29
+ "return_tensors": null,
30
+ "size": {
31
+ "height": 336,
32
+ "width": 336
33
+ }
34
+ }
processor_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "fake_image_token": "<|image|>",
3
+ "image_token": "<|image|>",
4
+ "patch_size": 14,
5
+ "processor_class": "Llama4Processor"
6
+ }
recipe.yaml ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ default_stage:
2
+ default_modifiers:
3
+ GPTQModifier:
4
+ targets: [Linear]
5
+ ignore: ['re:.*lm_head', 're:.*self_attn', 're:.*router', 're:vision_model.*', 're:multi_modal_projector.*',
6
+ Llama4TextAttention]
7
+ scheme: W4A16
8
+ sequential_update: true
9
+ block_size: 128
10
+ dampening_frac: 0.01
11
+ offload_hessians: false
special_tokens_map.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<|begin_of_text|>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "<|eot|>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "<|finetune_right_pad|>",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ }
23
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:172c9eb4beafc72601690da3ccfcede5c2e6806a8d5ec1fca33e22acea8023a4
3
+ size 27948578
tokenizer_config.json ADDED
The diff for this file is too large to render. See raw diff