cpatonn commited on
Commit
bd65a16
·
verified ·
1 Parent(s): 7723686

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +195 -0
README.md ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ pipeline_tag: text-generation
4
+ library_name: transformers
5
+ tags:
6
+ - vllm
7
+ base_model:
8
+ - openai/gpt-oss-120b
9
+ ---
10
+ # gpt-oss-120b-BF16
11
+
12
+ ## Method
13
+ Converted using the following script:
14
+ ```python
15
+ import torch
16
+ from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, Mxfp4Config
17
+
18
+ model_id = "openai/gpt-oss-120b"
19
+ output_dir = "./gpt-oss-120b-BF16"
20
+
21
+ quantization_config = Mxfp4Config(dequantize=True)
22
+ model_kwargs = dict(
23
+ torch_dtype=torch.bfloat16,
24
+ quantization_config=quantization_config,
25
+ device_map="auto",
26
+ )
27
+ model = AutoModelForCausalLM.from_pretrained(model_id, **model_kwargs)
28
+ tokenizer = AutoTokenizer.from_pretrained(model_id, use_fast=True)
29
+
30
+ model.save_pretrained(output_dir, save_safetensors=True, save_compressed=False)
31
+ tokenizer.save_pretrained(output_dir)
32
+ ```
33
+
34
+
35
+ # gpt-oss-120b
36
+ <p align="center">
37
+ <img alt="gpt-oss-120b" src="https://raw.githubusercontent.com/openai/gpt-oss/main/docs/gpt-oss-120b.svg">
38
+ </p>
39
+
40
+ <p align="center">
41
+ <a href="https://gpt-oss.com"><strong>Try gpt-oss</strong></a> ·
42
+ <a href="https://cookbook.openai.com/topic/gpt-oss"><strong>Guides</strong></a> ·
43
+ <a href="https://openai.com/index/gpt-oss-model-card"><strong>Model card</strong></a> ·
44
+ <a href="https://openai.com/index/introducing-gpt-oss/"><strong>OpenAI blog</strong></a>
45
+ </p>
46
+
47
+ <br>
48
+
49
+ Welcome to the gpt-oss series, [OpenAI’s open-weight models](https://openai.com/open-models) designed for powerful reasoning, agentic tasks, and versatile developer use cases.
50
+
51
+ We’re releasing two flavors of these open models:
52
+ - `gpt-oss-120b` — for production, general purpose, high reasoning use cases that fit into a single 80GB GPU (like NVIDIA H100 or AMD MI300X) (117B parameters with 5.1B active parameters)
53
+ - `gpt-oss-20b` — for lower latency, and local or specialized use cases (21B parameters with 3.6B active parameters)
54
+
55
+ Both models were trained on our [harmony response format](https://github.com/openai/harmony) and should only be used with the harmony format as it will not work correctly otherwise.
56
+
57
+
58
+ > [!NOTE]
59
+ > This model card is dedicated to the larger `gpt-oss-120b` model. Check out [`gpt-oss-20b`](https://huggingface.co/openai/gpt-oss-20b) for the smaller model.
60
+
61
+ # Highlights
62
+
63
+ * **Permissive Apache 2.0 license:** Build freely without copyleft restrictions or patent risk—ideal for experimentation, customization, and commercial deployment.
64
+ * **Configurable reasoning effort:** Easily adjust the reasoning effort (low, medium, high) based on your specific use case and latency needs.
65
+ * **Full chain-of-thought:** Gain complete access to the model’s reasoning process, facilitating easier debugging and increased trust in outputs. It’s not intended to be shown to end users.
66
+ * **Fine-tunable:** Fully customize models to your specific use case through parameter fine-tuning.
67
+ * **Agentic capabilities:** Use the models’ native capabilities for function calling, [web browsing](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#browser), [Python code execution](https://github.com/openai/gpt-oss/tree/main?tab=readme-ov-file#python), and Structured Outputs.
68
+ * **Native MXFP4 quantization:** The models are trained with native MXFP4 precision for the MoE layer, making `gpt-oss-120b` run on a single 80GB GPU (like NVIDIA H100 or AMD MI300X) and the `gpt-oss-20b` model run within 16GB of memory.
69
+
70
+ ---
71
+
72
+ # Inference examples
73
+
74
+ ## Transformers
75
+
76
+ You can use `gpt-oss-120b` and `gpt-oss-20b` with Transformers. If you use the Transformers chat template, it will automatically apply the [harmony response format](https://github.com/openai/harmony). If you use `model.generate` directly, you need to apply the harmony format manually using the chat template or use our [openai-harmony](https://github.com/openai/harmony) package.
77
+
78
+ To get started, install the necessary dependencies to setup your environment:
79
+
80
+ ```
81
+ pip install -U transformers kernels torch
82
+ ```
83
+
84
+ Once, setup you can proceed to run the model by running the snippet below:
85
+
86
+ ```py
87
+ from transformers import pipeline
88
+ import torch
89
+
90
+ model_id = "openai/gpt-oss-120b"
91
+
92
+ pipe = pipeline(
93
+ "text-generation",
94
+ model=model_id,
95
+ torch_dtype="auto",
96
+ device_map="auto",
97
+ )
98
+
99
+ messages = [
100
+ {"role": "user", "content": "Explain quantum mechanics clearly and concisely."},
101
+ ]
102
+
103
+ outputs = pipe(
104
+ messages,
105
+ max_new_tokens=256,
106
+ )
107
+ print(outputs[0]["generated_text"][-1])
108
+ ```
109
+
110
+ Alternatively, you can run the model via [`Transformers Serve`](https://huggingface.co/docs/transformers/main/serving) to spin up a OpenAI-compatible webserver:
111
+
112
+ ```
113
+ transformers serve
114
+ transformers chat localhost:8000 --model-name-or-path openai/gpt-oss-120b
115
+ ```
116
+
117
+ [Learn more about how to use gpt-oss with Transformers.](https://cookbook.openai.com/articles/gpt-oss/run-transformers)
118
+
119
+ ## vLLM
120
+
121
+ vLLM recommends using [uv](https://docs.astral.sh/uv/) for Python dependency management. You can use vLLM to spin up an OpenAI-compatible webserver. The following command will automatically download the model and start the server.
122
+
123
+ ```bash
124
+ uv pip install --pre vllm==0.10.1+gptoss \
125
+ --extra-index-url https://wheels.vllm.ai/gpt-oss/ \
126
+ --extra-index-url https://download.pytorch.org/whl/nightly/cu128 \
127
+ --index-strategy unsafe-best-match
128
+
129
+ vllm serve openai/gpt-oss-120b
130
+ ```
131
+
132
+ [Learn more about how to use gpt-oss with vLLM.](https://cookbook.openai.com/articles/gpt-oss/run-vllm)
133
+
134
+ ## PyTorch / Triton
135
+
136
+ To learn about how to use this model with PyTorch and Triton, check out our [reference implementations in the gpt-oss repository](https://github.com/openai/gpt-oss?tab=readme-ov-file#reference-pytorch-implementation).
137
+
138
+ ## Ollama
139
+
140
+ If you are trying to run gpt-oss on consumer hardware, you can use Ollama by running the following commands after [installing Ollama](https://ollama.com/download).
141
+
142
+ ```bash
143
+ # gpt-oss-120b
144
+ ollama pull gpt-oss:120b
145
+ ollama run gpt-oss:120b
146
+ ```
147
+
148
+ [Learn more about how to use gpt-oss with Ollama.](https://cookbook.openai.com/articles/gpt-oss/run-locally-ollama)
149
+
150
+ #### LM Studio
151
+
152
+ If you are using [LM Studio](https://lmstudio.ai/) you can use the following commands to download.
153
+
154
+ ```bash
155
+ # gpt-oss-120b
156
+ lms get openai/gpt-oss-120b
157
+ ```
158
+
159
+ Check out our [awesome list](https://github.com/openai/gpt-oss/blob/main/awesome-gpt-oss.md) for a broader collection of gpt-oss resources and inference partners.
160
+
161
+ ---
162
+
163
+ # Download the model
164
+
165
+ You can download the model weights from the [Hugging Face Hub](https://huggingface.co/collections/openai/gpt-oss-68911959590a1634ba11c7a4) directly from Hugging Face CLI:
166
+
167
+ ```shell
168
+ # gpt-oss-120b
169
+ huggingface-cli download openai/gpt-oss-120b --include "original/*" --local-dir gpt-oss-120b/
170
+ pip install gpt-oss
171
+ python -m gpt_oss.chat model/
172
+ ```
173
+
174
+ # Reasoning levels
175
+
176
+ You can adjust the reasoning level that suits your task across three levels:
177
+
178
+ * **Low:** Fast responses for general dialogue.
179
+ * **Medium:** Balanced speed and detail.
180
+ * **High:** Deep and detailed analysis.
181
+
182
+ The reasoning level can be set in the system prompts, e.g., "Reasoning: high".
183
+
184
+ # Tool use
185
+
186
+ The gpt-oss models are excellent for:
187
+ * Web browsing (using built-in browsing tools)
188
+ * Function calling with defined schemas
189
+ * Agentic operations like browser tasks
190
+
191
+ # Fine-tuning
192
+
193
+ Both gpt-oss models can be fine-tuned for a variety of specialized use cases.
194
+
195
+ This larger model `gpt-oss-120b` can be fine-tuned on a single H100 node, whereas the smaller [`gpt-oss-20b`](https://huggingface.co/openai/gpt-oss-20b) can even be fine-tuned on consumer hardware.