Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,71 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
datasets:
|
4 |
+
- liuhaotian/LLaVA-Pretrain
|
5 |
+
- liuhaotian/LLaVA-Instruct-150K
|
6 |
+
language:
|
7 |
+
- en
|
8 |
+
metrics:
|
9 |
+
- accuracy
|
10 |
+
- precision
|
11 |
+
- recall
|
12 |
+
- f1
|
13 |
+
base_model:
|
14 |
+
- apple/aimv2-large-patch14-224
|
15 |
+
- apple/OpenELM
|
16 |
+
pipeline_tag: image-text-to-text
|
17 |
+
tags:
|
18 |
+
- cpu
|
19 |
+
- nano
|
20 |
+
- small
|
21 |
+
- tiny
|
22 |
+
- llava
|
23 |
+
model_size: 0.6B parameters
|
24 |
+
---
|
25 |
+
|
26 |
+
**<center><span style="font-size:2em;">Tiny Llava 4 CPU π</span></center>**
|
27 |
+
|
28 |
+
---
|
29 |
+
|
30 |
+
### π **Model Overview**
|
31 |
+
`tiny-llava-open-elm-aimv2` is a lightweight image-text-to-text model that combines **[OpenELM 270M - INSTRUCT](https://huggingface.co/apple/OpenELM-270M-Instruct)** as the LLM backbone and **[AIMv2-Large-Patch14-224-distilled (309M)](https://huggingface.co/apple/aimv2-large-patch14-224-distilled)** as the vision encoder. The model has been fine-tuned using **LoRA (Low-Rank Adaptation)** for efficient training. It was developed using the **[TinyLLaVA Factory](https://github.com/TinyLLaVA/TinyLLaVA_Factory)** codebase, which provides a modular framework for lightweight multi-modal models.
|
32 |
+
|
33 |
+
The model is designed to run efficiently on **CPU**, making it ideal for resource-constrained environments. It is trained and evaluated on **POPE** and **TextVQA** benchmarks. The total model size is **0.6B parameters**.
|
34 |
+
|
35 |
+
---
|
36 |
+
|
37 |
+
### Usage
|
38 |
+
Execute the following test code:
|
39 |
+
```python
|
40 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
41 |
+
hf_path = 'cpu4dream/llava-small-OpenELM-AIMv2-0.6B-auto'
|
42 |
+
model = AutoModelForCausalLM.from_pretrained(hf_path, trust_remote_code=True)
|
43 |
+
model.cuda()
|
44 |
+
config = model.config
|
45 |
+
tokenizer = AutoTokenizer.from_pretrained(hf_path, use_fast=False, model_max_length = config.tokenizer_model_max_length,padding_side = config.tokenizer_padding_side)
|
46 |
+
prompt="What are these?"
|
47 |
+
image_url="http://images.cocodataset.org/test-stuff2017/000000000001.jpg"
|
48 |
+
output_text, genertaion_time = model.chat(prompt=prompt, image=image_url, tokenizer=tokenizer)
|
49 |
+
print('model output:', output_text)
|
50 |
+
print('runing time:', genertaion_time)
|
51 |
+
```
|
52 |
+
|
53 |
+
---
|
54 |
+
|
55 |
+
### π **Performance**
|
56 |
+
|
57 |
+
| Model Name | VQAv2 | GQA | SQA | TextVQA | MM-VET | POPE | MME | MMMU |
|
58 |
+
|:-----------------------------------------------------------:|:-----:|:-----:|:-----:|:-------:|:------:|:-----:|:------:|:-----:|
|
59 |
+
| [LLaVA-1.5-7B](https://huggingface.co/llava-hf/llava-1.5-7b-hf) | 78.5 | 62.0 | 66.8 | 58.2 | 30.5 | 85.9 | 1510.7 | - |
|
60 |
+
| [bczhou/TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B) | 79.9 | 62.0 | 69.1 | 59.1 | 32.0 | 86.4 | 1464.9 | - |
|
61 |
+
| [tinyllava/TinyLLaVA-Gemma-SigLIP-2.4B](https://huggingface.co/tinyllava/TinyLLaVA-Gemma-SigLIP-2.4B) | 78.4 | 61.6 | 64.4 | 53.6 | 26.9 | 86.4 | 1339.0 | 31.7 |
|
62 |
+
| [tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B](https://huggingface.co/tinyllava/TinyLLaVA-Phi-2-SigLIP-3.1B) | 80.1 | 62.1 | 73.0 | 60.3 | 37.5 | 87.2 | 1466.4 | 38.4 |
|
63 |
+
| cpu4dream/llava-small-OpenELM-AIMv2-0.6B | - | - | - | 39.68 | - | 83.93 | - | - |
|
64 |
+
|
65 |
+
---
|
66 |
+
|
67 |
+
### π **References**
|
68 |
+
- [OpenELM](https://huggingface.co/apple/OpenELM)
|
69 |
+
- [AIMv2-Large-Patch14-224](https://huggingface.co/apple/aimv2-large-patch14-224)
|
70 |
+
- [TinyLLaVA Factory](https://github.com/TinyLLaVA/TinyLLaVA_Factory)
|
71 |
+
- [LoRA Paper (arXiv:2402.14289)](https://arxiv.org/pdf/2402.14289)
|