Upload TinyLlavaForConditionalGeneration
Browse files- config.json +145 -0
- configuration.py +136 -0
- generation_config.json +6 -0
- model.safetensors +3 -0
- modeling_tinyllava_elm.py +1911 -0
config.json
ADDED
@@ -0,0 +1,145 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"architectures": [
|
3 |
+
"TinyLlavaForConditionalGeneration"
|
4 |
+
],
|
5 |
+
"auto_map": {
|
6 |
+
"AutoConfig": "configuration.TinyLlavaConfig",
|
7 |
+
"AutoModelForCausalLM": "modeling_tinyllava_elm.TinyLlavaForConditionalGeneration"
|
8 |
+
},
|
9 |
+
"cache_dir": null,
|
10 |
+
"connector_type": "mlp2x_gelu",
|
11 |
+
"hidden_size": 1280,
|
12 |
+
"ignore_index": -100,
|
13 |
+
"image_aspect_ratio": "square",
|
14 |
+
"image_token_index": -200,
|
15 |
+
"llm_model_name_or_path": "apple/OpenELM-270M-Instruct",
|
16 |
+
"model_type": "tinyllava",
|
17 |
+
"num_queries": 128,
|
18 |
+
"num_resampler_layers": 3,
|
19 |
+
"pad_token": "<unk>",
|
20 |
+
"resampler_hidden_size": 768,
|
21 |
+
"text_config": {
|
22 |
+
"_attn_implementation_autoset": true,
|
23 |
+
"_name_or_path": "apple/OpenELM-270M-Instruct",
|
24 |
+
"activation_fn_name": "swish",
|
25 |
+
"architectures": [
|
26 |
+
"OpenELMForCausalLM"
|
27 |
+
],
|
28 |
+
"auto_map": {
|
29 |
+
"AutoConfig": "apple/OpenELM-270M-Instruct--configuration_openelm.OpenELMConfig",
|
30 |
+
"AutoModelForCausalLM": "apple/OpenELM-270M-Instruct--modeling_openelm.OpenELMForCausalLM"
|
31 |
+
},
|
32 |
+
"ffn_dim_divisor": 256,
|
33 |
+
"ffn_multipliers": [
|
34 |
+
0.5,
|
35 |
+
0.73,
|
36 |
+
0.97,
|
37 |
+
1.2,
|
38 |
+
1.43,
|
39 |
+
1.67,
|
40 |
+
1.9,
|
41 |
+
2.13,
|
42 |
+
2.37,
|
43 |
+
2.6,
|
44 |
+
2.83,
|
45 |
+
3.07,
|
46 |
+
3.3,
|
47 |
+
3.53,
|
48 |
+
3.77,
|
49 |
+
4.0
|
50 |
+
],
|
51 |
+
"ffn_with_glu": true,
|
52 |
+
"head_dim": 64,
|
53 |
+
"max_context_length": 2048,
|
54 |
+
"model_dim": 1280,
|
55 |
+
"model_type": "openelm",
|
56 |
+
"normalization_layer_name": "rms_norm",
|
57 |
+
"normalize_qk_projections": true,
|
58 |
+
"num_gqa_groups": 4,
|
59 |
+
"num_kv_heads": [
|
60 |
+
3,
|
61 |
+
3,
|
62 |
+
3,
|
63 |
+
3,
|
64 |
+
3,
|
65 |
+
4,
|
66 |
+
4,
|
67 |
+
4,
|
68 |
+
4,
|
69 |
+
4,
|
70 |
+
4,
|
71 |
+
4,
|
72 |
+
5,
|
73 |
+
5,
|
74 |
+
5,
|
75 |
+
5
|
76 |
+
],
|
77 |
+
"num_query_heads": [
|
78 |
+
12,
|
79 |
+
12,
|
80 |
+
12,
|
81 |
+
12,
|
82 |
+
12,
|
83 |
+
16,
|
84 |
+
16,
|
85 |
+
16,
|
86 |
+
16,
|
87 |
+
16,
|
88 |
+
16,
|
89 |
+
16,
|
90 |
+
20,
|
91 |
+
20,
|
92 |
+
20,
|
93 |
+
20
|
94 |
+
],
|
95 |
+
"num_transformer_layers": 16,
|
96 |
+
"qkv_multipliers": [
|
97 |
+
0.5,
|
98 |
+
1.0
|
99 |
+
],
|
100 |
+
"rope_freq_constant": 10000,
|
101 |
+
"rope_max_length": 4096,
|
102 |
+
"share_input_output_layers": true,
|
103 |
+
"tie_word_embeddings": true,
|
104 |
+
"torch_dtype": "float16"
|
105 |
+
},
|
106 |
+
"tokenizer_model_max_length": 2048,
|
107 |
+
"tokenizer_name_or_path": "meta-llama/Llama-2-7b-hf",
|
108 |
+
"tokenizer_padding_side": "right",
|
109 |
+
"tokenizer_use_fast": false,
|
110 |
+
"torch_dtype": "float32",
|
111 |
+
"transformers_version": "4.47.1",
|
112 |
+
"tune_type_connector": "full",
|
113 |
+
"tune_type_llm": "lora",
|
114 |
+
"tune_type_vision_tower": "frozen",
|
115 |
+
"tune_vision_tower_from_layer": 0,
|
116 |
+
"use_cache": true,
|
117 |
+
"vision_config": {
|
118 |
+
"_name_or_path": "apple/aimv2-large-patch14-224-distilled",
|
119 |
+
"architectures": [
|
120 |
+
"AIMv2Model"
|
121 |
+
],
|
122 |
+
"auto_map": {
|
123 |
+
"AutoConfig": "apple/aimv2-large-patch14-224-distilled--configuration_aimv2.AIMv2Config",
|
124 |
+
"AutoModel": "apple/aimv2-large-patch14-224-distilled--modeling_aimv2.AIMv2Model",
|
125 |
+
"FlaxAutoModel": "apple/aimv2-large-patch14-224-distilled--modeling_flax_aimv2.FlaxAIMv2Model"
|
126 |
+
},
|
127 |
+
"image_size": 224,
|
128 |
+
"intermediate_size": 2816,
|
129 |
+
"model_name_or_path": "apple/aimv2-large-patch14-224-distilled",
|
130 |
+
"model_name_or_path2": "",
|
131 |
+
"model_type": "aimv2",
|
132 |
+
"num_attention_heads": 8,
|
133 |
+
"projection_dropout": 0.0,
|
134 |
+
"qkv_bias": false,
|
135 |
+
"rms_norm_eps": 1e-05,
|
136 |
+
"torch_dtype": "float32",
|
137 |
+
"use_bias": false
|
138 |
+
},
|
139 |
+
"vision_feature_layer": -2,
|
140 |
+
"vision_feature_select_strategy": "patch",
|
141 |
+
"vision_hidden_size": 1024,
|
142 |
+
"vision_model_name_or_path": "apple/aimv2-large-patch14-224-distilled",
|
143 |
+
"vision_model_name_or_path2": "",
|
144 |
+
"vocab_size": 32000
|
145 |
+
}
|
configuration.py
ADDED
@@ -0,0 +1,136 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from transformers import PretrainedConfig, LlavaConfig
|
2 |
+
from transformers import CONFIG_MAPPING
|
3 |
+
from transformers import AutoConfig
|
4 |
+
|
5 |
+
IGNORE_INDEX = -100
|
6 |
+
IMAGE_TOKEN_INDEX = -200
|
7 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
8 |
+
|
9 |
+
class TinyLlavaConfig(PretrainedConfig):
|
10 |
+
|
11 |
+
model_type = "tinyllava"
|
12 |
+
def __init__(
|
13 |
+
self,
|
14 |
+
llm_model_name_or_path = '',
|
15 |
+
tokenizer_name_or_path = None,
|
16 |
+
vision_model_name_or_path = '',
|
17 |
+
vision_model_name_or_path2 = '',
|
18 |
+
connector_type = None,
|
19 |
+
text_config=None,
|
20 |
+
hidden_size=2048,
|
21 |
+
vocab_size=32000,
|
22 |
+
ignore_index=-100,
|
23 |
+
image_token_index=32000,
|
24 |
+
pad_token = None,
|
25 |
+
pad_token_id = None,
|
26 |
+
tokenizer_padding_side = 'right',
|
27 |
+
tokenizer_model_max_length = 2048,
|
28 |
+
vision_config = None,
|
29 |
+
vision_hidden_size = None,
|
30 |
+
vision_feature_layer = -2,
|
31 |
+
vision_feature_select_strategy = 'patch',
|
32 |
+
image_aspect_ratio = 'square',
|
33 |
+
resampler_hidden_size = None,
|
34 |
+
num_queries = None,
|
35 |
+
num_resampler_layers = None,
|
36 |
+
use_cache = False,
|
37 |
+
cache_dir = None,
|
38 |
+
tokenizer_use_fast = False,
|
39 |
+
tune_type_llm = 'frozen',
|
40 |
+
tune_type_connector = 'frozen',
|
41 |
+
tune_type_vision_tower = 'frozen',
|
42 |
+
tune_vision_tower_from_layer = -1,
|
43 |
+
|
44 |
+
**kwargs
|
45 |
+
|
46 |
+
):
|
47 |
+
self.llm_model_name_or_path = llm_model_name_or_path
|
48 |
+
self.tokenizer_name_or_path = tokenizer_name_or_path or self.llm_model_name_or_path
|
49 |
+
self.vision_model_name_or_path = vision_model_name_or_path
|
50 |
+
self.vision_model_name_or_path2 = vision_model_name_or_path2
|
51 |
+
self.connector_type = connector_type
|
52 |
+
self.tune_type_llm = tune_type_llm
|
53 |
+
self.tune_type_connector = tune_type_connector
|
54 |
+
self.tune_type_vision_tower = tune_type_vision_tower
|
55 |
+
self.tune_vision_tower_from_layer = tune_vision_tower_from_layer
|
56 |
+
|
57 |
+
self.ignore_index = IGNORE_INDEX
|
58 |
+
self.image_token_index = IMAGE_TOKEN_INDEX
|
59 |
+
self.pad_token = pad_token
|
60 |
+
self.pad_token_id = pad_token_id
|
61 |
+
self.tokenizer_padding_side = tokenizer_padding_side
|
62 |
+
self.tokenizer_model_max_length = tokenizer_model_max_length
|
63 |
+
self.vision_feature_layer = vision_feature_layer
|
64 |
+
self.vision_feature_select_strategy = vision_feature_select_strategy
|
65 |
+
self.image_aspect_ratio = image_aspect_ratio
|
66 |
+
self.resampler_hidden_size = resampler_hidden_size
|
67 |
+
self.num_queries = num_queries
|
68 |
+
self.num_resampler_layers = num_resampler_layers
|
69 |
+
self.use_cache = use_cache
|
70 |
+
self.cache_dir = cache_dir
|
71 |
+
self.tokenizer_use_fast = tokenizer_use_fast
|
72 |
+
self._load_text_config(text_config)
|
73 |
+
self._load_vision_config(vision_config)
|
74 |
+
|
75 |
+
super().__init__(**kwargs)
|
76 |
+
|
77 |
+
def load_from_config(self, config):
|
78 |
+
self.llm_model_name_or_path = getattr(config, 'model_name_or_path', '')
|
79 |
+
self.tokenizer_name_or_path = getattr(config, 'tokenizer_name_or_path', None) or self.llm_model_name_or_path
|
80 |
+
self.vision_model_name_or_path = getattr(config, 'vision_tower', '')
|
81 |
+
self.vision_model_name_or_path2 = getattr(config, 'vision_tower2', '')
|
82 |
+
self.connector_type = getattr(config, 'connector_type', None)
|
83 |
+
self.vision_feature_layer = getattr(config, 'mm_vision_select_layer', -2)
|
84 |
+
self.vision_feature_select_strategy = getattr(config, 'mm_vision_select_feature', "patch")
|
85 |
+
self.image_aspect_ratio = getattr(config, 'image_aspect_ratio', "pad")
|
86 |
+
self.resampler_hidden_size = getattr(config, 'resampler_hidden_size', None)
|
87 |
+
self.num_queries = getattr(config, 'num_queries', None)
|
88 |
+
self.num_resampler_layers = getattr(config, 'num_resampler_layers', None)
|
89 |
+
|
90 |
+
self.cache_dir = getattr(config, 'cache_dir', None)
|
91 |
+
self.tokenizer_use_fast = getattr(config, 'tokenizer_use_fast', False)
|
92 |
+
self.tokenizer_model_max_length = getattr(config, 'model_max_length', 2048)
|
93 |
+
self.tokenizer_padding_side = getattr(config, 'tokenizer_padding_side', 'right')
|
94 |
+
|
95 |
+
self._load_text_config()
|
96 |
+
self._load_vision_config()
|
97 |
+
|
98 |
+
|
99 |
+
def _load_text_config(self, text_config=None):
|
100 |
+
if self.llm_model_name_or_path is None or self.llm_model_name_or_path == '':
|
101 |
+
self.text_config = CONFIG_MAPPING['llama']()
|
102 |
+
|
103 |
+
else:
|
104 |
+
self.text_config = AutoConfig.from_pretrained(self.llm_model_name_or_path, trust_remote_code=True)
|
105 |
+
if text_config is not None:
|
106 |
+
self.text_config = self.text_config.from_dict(text_config)
|
107 |
+
|
108 |
+
self.hidden_size = getattr(self.text_config, 'hidden_size', getattr(self.text_config, 'model_dim', None))
|
109 |
+
self.vocab_size = getattr(self.text_config, 'vocab_size', None)
|
110 |
+
|
111 |
+
|
112 |
+
|
113 |
+
def _load_vision_config(self, vision_config=None):
|
114 |
+
if self.vision_model_name_or_path is None or self.vision_model_name_or_path == '':
|
115 |
+
self.vision_config = CONFIG_MAPPING['clip_vision_model'](
|
116 |
+
intermediate_size=4096,
|
117 |
+
hidden_size=1024,
|
118 |
+
patch_size=14,
|
119 |
+
image_size=336,
|
120 |
+
num_hidden_layers=24,
|
121 |
+
num_attention_heads=16,
|
122 |
+
vocab_size=32000,
|
123 |
+
projection_dim=768,
|
124 |
+
)
|
125 |
+
|
126 |
+
else:
|
127 |
+
self.vision_config = AutoConfig.from_pretrained(self.vision_model_name_or_path.split(':')[-1], trust_remote_code=True)
|
128 |
+
self.vision_config = getattr(self.vision_config, 'vision_config', self.vision_config)
|
129 |
+
if vision_config is not None:
|
130 |
+
self.vision_config = self.vision_config.from_dict(vision_config)
|
131 |
+
|
132 |
+
self.vision_config.model_name_or_path = self.vision_model_name_or_path.split(':')[-1]
|
133 |
+
self.vision_config.model_name_or_path2 = self.vision_model_name_or_path2.split(':')[-1]
|
134 |
+
self.vision_hidden_size = getattr(self.vision_config, 'hidden_size', None)
|
135 |
+
|
136 |
+
|
generation_config.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_from_model_config": true,
|
3 |
+
"bos_token_id": 1,
|
4 |
+
"eos_token_id": 2,
|
5 |
+
"transformers_version": "4.47.1"
|
6 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0469b8698895fb3758ab656d55b5e4d1fcb3d6cc97dc255b56a08cdd6e65a09d
|
3 |
+
size 2334746616
|
modeling_tinyllava_elm.py
ADDED
@@ -0,0 +1,1911 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from dataclasses import dataclass
|
2 |
+
import dataclasses
|
3 |
+
from typing import List, Optional, Tuple, Union
|
4 |
+
import ast
|
5 |
+
import re
|
6 |
+
from enum import auto, Enum
|
7 |
+
import requests
|
8 |
+
from PIL import Image
|
9 |
+
from io import BytesIO
|
10 |
+
import base64
|
11 |
+
import time
|
12 |
+
|
13 |
+
import torch
|
14 |
+
import torch.utils.checkpoint
|
15 |
+
from torch import nn, Tensor
|
16 |
+
from torch.nn import functional as F
|
17 |
+
|
18 |
+
from transformers import PreTrainedModel
|
19 |
+
from transformers.modeling_outputs import CausalLMOutputWithPast
|
20 |
+
from transformers.generation.utils import GenerateOutput
|
21 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoModel, AutoImageProcessor
|
22 |
+
|
23 |
+
from configuration import TinyLlavaConfig, IGNORE_INDEX, IMAGE_TOKEN_INDEX, DEFAULT_IMAGE_TOKEN
|
24 |
+
|
25 |
+
# from tinyllava.utils.data_utils import get_value_from_kwargs
|
26 |
+
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
27 |
+
WORKER_HEART_BEAT_INTERVAL = 15
|
28 |
+
|
29 |
+
LOGDIR = "."
|
30 |
+
import os
|
31 |
+
#
|
32 |
+
# For licensing see accompanying LICENSE file.
|
33 |
+
# Copyright (C) 2024 Apple Inc. All Rights Reserved.
|
34 |
+
#
|
35 |
+
|
36 |
+
from torch.nn import CrossEntropyLoss
|
37 |
+
from transformers.activations import ACT2FN
|
38 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
39 |
+
from transformers.modeling_outputs import (
|
40 |
+
BaseModelOutputWithPast,
|
41 |
+
)
|
42 |
+
from transformers.utils import logging
|
43 |
+
|
44 |
+
logger = logging.get_logger(__name__)
|
45 |
+
|
46 |
+
# this import has to be relative, otherwise, when setting trust_remote_code=True
|
47 |
+
# huggingface transformers won't be able to load the module correctly
|
48 |
+
from numbers import Number
|
49 |
+
from typing import List, Optional, Union
|
50 |
+
|
51 |
+
import numpy as np
|
52 |
+
from transformers import PretrainedConfig, AutoTokenizer
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
logger = logging.get_logger(__name__)
|
57 |
+
|
58 |
+
# Model Constants
|
59 |
+
IGNORE_INDEX = -100
|
60 |
+
IMAGE_TOKEN_INDEX = -200
|
61 |
+
DEFAULT_IMAGE_TOKEN = "<image>"
|
62 |
+
DEFAULT_IMAGE_PATCH_TOKEN = "<im_patch>"
|
63 |
+
DEFAULT_IM_START_TOKEN = "<im_start>"
|
64 |
+
DEFAULT_IM_END_TOKEN = "<im_end>"
|
65 |
+
IMAGE_PLACEHOLDER = "<image-placeholder>"
|
66 |
+
|
67 |
+
CONTROLLER_HEART_BEAT_EXPIRATION = 30
|
68 |
+
WORKER_HEART_BEAT_INTERVAL = 15
|
69 |
+
LOGDIR = "."
|
70 |
+
|
71 |
+
|
72 |
+
class SeparatorStyle(Enum):
|
73 |
+
"""Different separator style."""
|
74 |
+
SINGLE = auto()
|
75 |
+
TWO = auto()
|
76 |
+
MPT = auto()
|
77 |
+
PLAIN = auto()
|
78 |
+
LLAMA_2 = auto()
|
79 |
+
TINY_LLAMA = auto()
|
80 |
+
QWEN_2 = auto()
|
81 |
+
|
82 |
+
|
83 |
+
@dataclasses.dataclass
|
84 |
+
class Conversation:
|
85 |
+
"""A class that keeps all conversation history."""
|
86 |
+
system: str
|
87 |
+
roles: List[str]
|
88 |
+
messages: List[List[str]]
|
89 |
+
offset: int
|
90 |
+
sep_style: SeparatorStyle = SeparatorStyle.SINGLE
|
91 |
+
sep: str = "###"
|
92 |
+
sep2: str = None
|
93 |
+
version: str = "Unknown"
|
94 |
+
|
95 |
+
skip_next: bool = False
|
96 |
+
|
97 |
+
def get_prompt(self):
|
98 |
+
messages = self.messages
|
99 |
+
if len(messages) > 0 and type(messages[0][1]) is tuple:
|
100 |
+
messages = self.messages.copy()
|
101 |
+
init_role, init_msg = messages[0].copy()
|
102 |
+
init_msg = init_msg[0].replace("<image>", "").strip()
|
103 |
+
if 'mmtag' in self.version:
|
104 |
+
messages[0] = (init_role, init_msg)
|
105 |
+
messages.insert(0, (self.roles[0], "<Image><image></Image>"))
|
106 |
+
messages.insert(1, (self.roles[1], "Received."))
|
107 |
+
else:
|
108 |
+
messages[0] = (init_role, "<image>\n" + init_msg)
|
109 |
+
|
110 |
+
if self.sep_style == SeparatorStyle.TWO:
|
111 |
+
seps = [self.sep, self.sep2]
|
112 |
+
ret = self.system + seps[0]
|
113 |
+
for i, (role, message) in enumerate(messages):
|
114 |
+
if message:
|
115 |
+
if type(message) is tuple:
|
116 |
+
message, _, _ = message
|
117 |
+
ret += role + ": " + message + seps[i % 2]
|
118 |
+
else:
|
119 |
+
ret += role + ":"
|
120 |
+
else:
|
121 |
+
raise ValueError(f"Invalid style: {self.sep_style}")
|
122 |
+
|
123 |
+
return ret
|
124 |
+
|
125 |
+
def append_message(self, role, message):
|
126 |
+
self.messages.append([role, message])
|
127 |
+
|
128 |
+
def copy(self):
|
129 |
+
return Conversation(
|
130 |
+
system=self.system,
|
131 |
+
roles=self.roles,
|
132 |
+
messages=[[x, y] for x, y in self.messages],
|
133 |
+
offset=self.offset,
|
134 |
+
sep_style=self.sep_style,
|
135 |
+
sep=self.sep,
|
136 |
+
sep2=self.sep2,
|
137 |
+
version=self.version)
|
138 |
+
|
139 |
+
|
140 |
+
|
141 |
+
|
142 |
+
conv_phi_v0 = Conversation(
|
143 |
+
system="A chat between a curious user and an artificial intelligence assistant. "
|
144 |
+
"The assistant gives helpful, detailed, and polite answers to the user's questions.",
|
145 |
+
roles=("USER", "ASSISTANT"),
|
146 |
+
version="phi",
|
147 |
+
messages=(),
|
148 |
+
offset=0,
|
149 |
+
sep_style=SeparatorStyle.TWO,
|
150 |
+
sep=" ",
|
151 |
+
sep2="<|endoftext|>",
|
152 |
+
)
|
153 |
+
|
154 |
+
|
155 |
+
def load_image_from_base64(image):
|
156 |
+
return Image.open(BytesIO(base64.b64decode(image)))
|
157 |
+
|
158 |
+
|
159 |
+
def expand2square(pil_img, background_color):
|
160 |
+
width, height = pil_img.size
|
161 |
+
if width == height:
|
162 |
+
return pil_img
|
163 |
+
elif width > height:
|
164 |
+
result = Image.new(pil_img.mode, (width, width), background_color)
|
165 |
+
result.paste(pil_img, (0, (width - height) // 2))
|
166 |
+
return result
|
167 |
+
else:
|
168 |
+
result = Image.new(pil_img.mode, (height, height), background_color)
|
169 |
+
result.paste(pil_img, ((height - width) // 2, 0))
|
170 |
+
return result
|
171 |
+
|
172 |
+
|
173 |
+
def process_images(images, image_processor, model_cfg):
|
174 |
+
image_aspect_ratio = getattr(model_cfg, "image_aspect_ratio", None)
|
175 |
+
new_images = []
|
176 |
+
if image_aspect_ratio == 'pad':
|
177 |
+
for image in images:
|
178 |
+
image = expand2square(image, tuple(int(x*255) for x in image_processor.image_mean))
|
179 |
+
image = image_processor.preprocess(image, return_tensors='pt')['pixel_values'][0]
|
180 |
+
new_images.append(image)
|
181 |
+
else:
|
182 |
+
return image_processor(images, return_tensors='pt')['pixel_values']
|
183 |
+
if all(x.shape == new_images[0].shape for x in new_images):
|
184 |
+
new_images = torch.stack(new_images, dim=0)
|
185 |
+
return new_images
|
186 |
+
|
187 |
+
|
188 |
+
def tokenizer_image_token(prompt, tokenizer, image_token_index=IMAGE_TOKEN_INDEX, return_tensors=None):
|
189 |
+
prompt_chunks = [tokenizer(chunk).input_ids for chunk in prompt.split('<image>')]
|
190 |
+
|
191 |
+
def insert_separator(X, sep):
|
192 |
+
return [ele for sublist in zip(X, [sep]*len(X)) for ele in sublist][:-1]
|
193 |
+
|
194 |
+
input_ids = []
|
195 |
+
offset = 0
|
196 |
+
if len(prompt_chunks) > 0 and len(prompt_chunks[0]) > 0 and prompt_chunks[0][0] == tokenizer.bos_token_id:
|
197 |
+
offset = 1
|
198 |
+
input_ids.append(prompt_chunks[0][0])
|
199 |
+
|
200 |
+
for x in insert_separator(prompt_chunks, [image_token_index] * (offset + 1)):
|
201 |
+
input_ids.extend(x[offset:])
|
202 |
+
|
203 |
+
if return_tensors is not None:
|
204 |
+
if return_tensors == 'pt':
|
205 |
+
return torch.tensor(input_ids, dtype=torch.long)
|
206 |
+
raise ValueError(f'Unsupported tensor type: {return_tensors}')
|
207 |
+
return input_ids
|
208 |
+
|
209 |
+
def load_image(image_file):
|
210 |
+
if image_file.startswith("http") or image_file.startswith("https"):
|
211 |
+
response = requests.get(image_file)
|
212 |
+
image = Image.open(BytesIO(response.content)).convert("RGB")
|
213 |
+
else:
|
214 |
+
image = Image.open(image_file).convert("RGB")
|
215 |
+
return image
|
216 |
+
|
217 |
+
|
218 |
+
def make_divisible(
|
219 |
+
v: Union[float, int],
|
220 |
+
divisor: Optional[int] = 8,
|
221 |
+
min_value: Optional[Union[float, int]] = None,
|
222 |
+
) -> Union[float, int]:
|
223 |
+
"""
|
224 |
+
This function is taken from the original tf repo.
|
225 |
+
It ensures that all layers have a channel number that is divisible by the divisor
|
226 |
+
It can be seen at:
|
227 |
+
https://github.com/tensorflow/models/blob/2cfc99eff5e5eb729c6793d2f3d03aa1c9be2b15/research/slim/nets/mobilenet/mobilenet.py#L62
|
228 |
+
Args:
|
229 |
+
v: input value
|
230 |
+
divisor: default to 8
|
231 |
+
min_value: minimum divisor value
|
232 |
+
Returns:
|
233 |
+
new_v: new divisible value
|
234 |
+
"""
|
235 |
+
if min_value is None:
|
236 |
+
min_value = divisor
|
237 |
+
new_v = max(min_value, int(v + divisor / 2) // divisor * divisor)
|
238 |
+
# Make sure that round down does not go down by more than 10%.
|
239 |
+
if new_v < 0.9 * v:
|
240 |
+
new_v += divisor
|
241 |
+
return new_v
|
242 |
+
|
243 |
+
|
244 |
+
def compute_heads(model_dim: int, head_dim: int) -> int:
|
245 |
+
"""Compute the number of heads.
|
246 |
+
Args:
|
247 |
+
model_dim: Model dimension.
|
248 |
+
head_dim: Head dimension.
|
249 |
+
Returns:
|
250 |
+
An integer denoting number of heads in multi-head attention is returned.
|
251 |
+
Raises:
|
252 |
+
ValueError: if model dimension is not divisible by head dimension.
|
253 |
+
"""
|
254 |
+
if model_dim % head_dim == 0:
|
255 |
+
return model_dim // head_dim
|
256 |
+
else:
|
257 |
+
raise ValueError(
|
258 |
+
f"Model dimension should be divisible by head dimension. Got: {model_dim} and {head_dim}."
|
259 |
+
)
|
260 |
+
|
261 |
+
|
262 |
+
OpenELM_CONFIGS = {
|
263 |
+
"OpenELM-270M": dict(
|
264 |
+
num_transformer_layers=16,
|
265 |
+
model_dim=1280,
|
266 |
+
head_dim=64,
|
267 |
+
num_gqa_groups=4,
|
268 |
+
normalize_qk_projections=True,
|
269 |
+
share_input_output_layers=True,
|
270 |
+
# Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
|
271 |
+
ffn_multipliers=(0.5, 4.0),
|
272 |
+
qkv_multipliers=(0.5, 1.0),
|
273 |
+
),
|
274 |
+
"OpenELM-450M": dict(
|
275 |
+
num_transformer_layers=20,
|
276 |
+
model_dim=1536,
|
277 |
+
head_dim=64,
|
278 |
+
num_gqa_groups=4,
|
279 |
+
normalize_qk_projections=True,
|
280 |
+
share_input_output_layers=True,
|
281 |
+
# Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
|
282 |
+
ffn_multipliers=(0.5, 4.0),
|
283 |
+
qkv_multipliers=(0.5, 1.0),
|
284 |
+
),
|
285 |
+
"OpenELM-1_1B": dict(
|
286 |
+
num_transformer_layers=28,
|
287 |
+
model_dim=2048,
|
288 |
+
head_dim=64,
|
289 |
+
num_gqa_groups=4,
|
290 |
+
normalize_qk_projections=True,
|
291 |
+
share_input_output_layers=True,
|
292 |
+
# Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
|
293 |
+
ffn_multipliers=(0.5, 4.0),
|
294 |
+
qkv_multipliers=(0.5, 1.0),
|
295 |
+
),
|
296 |
+
"OpenELM-3B": dict(
|
297 |
+
num_transformer_layers=36,
|
298 |
+
model_dim=3072,
|
299 |
+
head_dim=128,
|
300 |
+
num_gqa_groups=4,
|
301 |
+
normalize_qk_projections=True,
|
302 |
+
share_input_output_layers=True,
|
303 |
+
# Vary the FFN and QKV multipliers to create variable FFN and attention layers respectively.
|
304 |
+
ffn_multipliers=(0.5, 4.0),
|
305 |
+
qkv_multipliers=(0.5, 1.0),
|
306 |
+
),
|
307 |
+
}
|
308 |
+
|
309 |
+
|
310 |
+
class OpenELMConfig(PretrainedConfig):
|
311 |
+
r"""
|
312 |
+
This is the configuration class to store the configuration of a [`OpenELMModel`]. It is used to instantiate an OpenELM model according to the specified arguments, defining the model architecture.
|
313 |
+
Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
|
314 |
+
documentation from [`PretrainedConfig`] for more information.
|
315 |
+
Args:
|
316 |
+
vocab_size (`int`, *optional*, defaults to 32000):
|
317 |
+
Vocabulary size of the OpenELM model.
|
318 |
+
max_context_length (`int`, *optional*, defaults to 2048):
|
319 |
+
Maximum number of input tokens.
|
320 |
+
num_transformer_layers (`int`, *optional*, defaults to 12):
|
321 |
+
Number of hidden layers in the Transformer decoder.
|
322 |
+
model_dim (`int`, *optional*, defaults to 2048):
|
323 |
+
Dimension of the hidden representations.
|
324 |
+
head_dim (`int`, *optional*, defaults to 128):
|
325 |
+
The attention head dimension.
|
326 |
+
qkv_multipliers (`Union[Number, List[Number]]`, *optional*, defaults to 1.0):
|
327 |
+
If the qkv_multipliers is a Number, then all attention layers have the same latent dimensions,
|
328 |
+
resulting in uniform allocation of parameters.
|
329 |
+
If the qkv_multipliers is a List of Number, then each attention layer have different latent dimensions
|
330 |
+
assuming qkv_multipliers[0] != qkv_multipliers[1]. This results in variable allocation of parameters in attention layer.
|
331 |
+
This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
|
332 |
+
num_query_heads (`Union[int, None]`, *optional*, defaults to None):
|
333 |
+
The number of query heads, computed from `compute_heads(model_dim=model_dim, head_dim=head_dim)`.
|
334 |
+
num_gqa_groups (`int`, *optional*, defaults to 1):
|
335 |
+
This variable allows to switch between multi-head attention, group query attention, and multi-query attention.
|
336 |
+
When num_gqa_groups == 1, then it is multi-head attention.
|
337 |
+
When 1 < num_gqa_groups < num_heads and num_heads is divisible by num_gqa_groups, then it is group query attention
|
338 |
+
When num_gqa_groups == num_heads, then it is multi-query attention
|
339 |
+
ffn_multipliers (`Union[Number, List[Number]]`, *optional*, defaults to 4.0):
|
340 |
+
Feed-forward network (FFN) multipliers.
|
341 |
+
If the ffn_multipliers is a Number, then all FFN layers have the same latent dimensions,
|
342 |
+
resulting in uniform allocation of parameters.
|
343 |
+
If the ffn_multipliers is a List of Number, then each FFN layer have different latent dimensions
|
344 |
+
assuming ffn_multipliers[0] != ffn_multipliers[1]. This results in variable allocation of parameters in FFN layer.
|
345 |
+
This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
|
346 |
+
ffn_with_glu (`bool`, *optional*, defaults to True):
|
347 |
+
Whether to use FFN with Gated Linear Unit (GLU)
|
348 |
+
ffn_dim_divisor (`int`, *optional*, defaults to 256):
|
349 |
+
The ffn layer dimension divisor.
|
350 |
+
activation_fn_name (`str` or `function`, *optional*, defaults to `"swish"`):
|
351 |
+
The non-linear activation function (function or string) in the decoder.
|
352 |
+
normalization_layer_name (`str` or `function`, *optional*, defaults to `"rms_norm"`):
|
353 |
+
Type of normalization layer.
|
354 |
+
normalize_qk_projections (`bool`, *optional*, defaults to False):
|
355 |
+
Whether to normalize queries and keys after projections
|
356 |
+
share_input_output_layers (`bool`, *optional*, defaults to False):
|
357 |
+
Whether to share the embedding between input and output linear layer
|
358 |
+
rope_freq_constant (`int`, *optional*, defaults to 10000):
|
359 |
+
The base period of the RoPE embeddings.
|
360 |
+
rope_max_length (`int`, *optional*, defaults to 4096):
|
361 |
+
That rope_max_length is set to twice of max_context_length.
|
362 |
+
This allows flexibility in token lengths during training or fine-tuning.
|
363 |
+
initializer_range (`float`, *optional*, defaults to 0.02):
|
364 |
+
The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
|
365 |
+
use_cache (`bool`, *optional*, defaults to `True`):
|
366 |
+
Whether or not the model should return the last key/values attentions (not used by all models). Only
|
367 |
+
relevant if `config.is_decoder=True`.
|
368 |
+
bos_token_id (`int`, *optional*, defaults to 2):
|
369 |
+
Beginning of stream token id.
|
370 |
+
eos_token_id (`int`, *optional*, defaults to 1):
|
371 |
+
End of stream token id.
|
372 |
+
"""
|
373 |
+
|
374 |
+
model_type = "openelm"
|
375 |
+
|
376 |
+
def __init__(
|
377 |
+
self,
|
378 |
+
vocab_size: int = 32000,
|
379 |
+
max_context_length: int = 2048,
|
380 |
+
num_transformer_layers: int = 12,
|
381 |
+
model_dim: int = 2048,
|
382 |
+
head_dim: int = 128,
|
383 |
+
qkv_multipliers: Union[Number, List[Number]] = 1.0,
|
384 |
+
num_query_heads: Union[int, None] = None,
|
385 |
+
num_gqa_groups: int = 1,
|
386 |
+
ffn_multipliers: Union[Number, List[Number]] = 4.0,
|
387 |
+
ffn_with_glu: bool = True,
|
388 |
+
ffn_dim_divisor: int = 256,
|
389 |
+
activation_fn_name: str = "swish",
|
390 |
+
normalization_layer_name: str = "rms_norm",
|
391 |
+
normalize_qk_projections: bool = False,
|
392 |
+
share_input_output_layers: bool = False,
|
393 |
+
rope_freq_constant: int = 10000,
|
394 |
+
rope_max_length: int = 4096,
|
395 |
+
initializer_range: float = 0.02,
|
396 |
+
use_cache: bool = True,
|
397 |
+
bos_token_id: int = 1,
|
398 |
+
eos_token_id: int = 2,
|
399 |
+
**kwargs,
|
400 |
+
) -> None:
|
401 |
+
self.vocab_size = vocab_size
|
402 |
+
self.max_context_length = max_context_length
|
403 |
+
self.num_transformer_layers = num_transformer_layers
|
404 |
+
self.model_dim = model_dim
|
405 |
+
self.head_dim = head_dim
|
406 |
+
self.qkv_multipliers = qkv_multipliers
|
407 |
+
self.num_query_heads = num_query_heads
|
408 |
+
self.num_gqa_groups = num_gqa_groups
|
409 |
+
self.ffn_multipliers = ffn_multipliers
|
410 |
+
self.ffn_with_glu = ffn_with_glu
|
411 |
+
self.ffn_dim_divisor = ffn_dim_divisor
|
412 |
+
self.activation_fn_name = activation_fn_name
|
413 |
+
self.normalization_layer_name = normalization_layer_name
|
414 |
+
self.normalize_qk_projections = normalize_qk_projections
|
415 |
+
self.share_input_output_layers = share_input_output_layers
|
416 |
+
self.rope_freq_constant = rope_freq_constant
|
417 |
+
self.rope_max_length = rope_max_length
|
418 |
+
self.num_query_heads = (
|
419 |
+
compute_heads(model_dim=model_dim, head_dim=head_dim)
|
420 |
+
if num_query_heads is None
|
421 |
+
else num_query_heads
|
422 |
+
)
|
423 |
+
self.initializer_range = initializer_range
|
424 |
+
|
425 |
+
self.__post_init__()
|
426 |
+
super().__init__(
|
427 |
+
use_cache=use_cache,
|
428 |
+
bos_token_id=bos_token_id,
|
429 |
+
eos_token_id=eos_token_id,
|
430 |
+
**kwargs,
|
431 |
+
)
|
432 |
+
|
433 |
+
def __post_init__(self) -> None:
|
434 |
+
if self.num_gqa_groups is not None:
|
435 |
+
head_multiple_of = self.num_gqa_groups
|
436 |
+
else:
|
437 |
+
head_multiple_of = 2
|
438 |
+
|
439 |
+
if isinstance(self.qkv_multipliers, Number):
|
440 |
+
# All attention layers have the same latent dimensions, resulting in uniform allocation of parameters.
|
441 |
+
qkv_dim = make_divisible(
|
442 |
+
self.model_dim * self.qkv_multipliers,
|
443 |
+
divisor=self.head_dim * head_multiple_of,
|
444 |
+
)
|
445 |
+
query_dims = [int(qkv_dim)] * self.num_transformer_layers
|
446 |
+
|
447 |
+
elif (
|
448 |
+
isinstance(self.qkv_multipliers, (tuple, list))
|
449 |
+
and len(self.qkv_multipliers) == 2
|
450 |
+
):
|
451 |
+
# Each attention layer have different latent dimensions assuming qkv_multipliers[0] != qkv_multipliers[1].
|
452 |
+
# This results in variable allocation of parameters in attention layer.
|
453 |
+
# This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
|
454 |
+
qkv_multipliers = [
|
455 |
+
round(v, 2)
|
456 |
+
for v in np.linspace(
|
457 |
+
self.qkv_multipliers[0],
|
458 |
+
self.qkv_multipliers[1],
|
459 |
+
num=self.num_transformer_layers,
|
460 |
+
dtype=float,
|
461 |
+
)
|
462 |
+
]
|
463 |
+
# Make sure that scaled model dimension is divisible by scaled head dimension.
|
464 |
+
query_dims = [
|
465 |
+
int(
|
466 |
+
make_divisible(
|
467 |
+
self.model_dim * m, divisor=self.head_dim * head_multiple_of
|
468 |
+
)
|
469 |
+
)
|
470 |
+
for m in qkv_multipliers
|
471 |
+
]
|
472 |
+
else:
|
473 |
+
raise NotImplementedError(
|
474 |
+
f"QKV multipliers should be a single number or a list containing exactly two numbers. Got: {qkv_multipliers}."
|
475 |
+
)
|
476 |
+
|
477 |
+
# compute the number of query, key, and value heads
|
478 |
+
# For multi-head and multi-query attention, the number of heads for query, key, and value are the same.
|
479 |
+
# For group query attention, the number of key and value heads are the same.
|
480 |
+
self.num_query_heads = [
|
481 |
+
int(compute_heads(q_dim, self.head_dim)) for q_dim in query_dims
|
482 |
+
]
|
483 |
+
self.num_kv_heads = [
|
484 |
+
q_heads // self.num_gqa_groups for q_heads in self.num_query_heads
|
485 |
+
]
|
486 |
+
|
487 |
+
# Feed-forward network (FFN) multipliers
|
488 |
+
if isinstance(self.ffn_multipliers, Number):
|
489 |
+
# All FFN layers have the same latent dimensions, resulting in uniform allocation of parameters.
|
490 |
+
self.ffn_multipliers = [self.ffn_multipliers] * self.num_transformer_layers
|
491 |
+
elif isinstance(self.ffn_multipliers, (tuple, list)):
|
492 |
+
# Each FFN layer have different latent dimensions assuming ffn_multipliers[0] != ffn_multipliers[1].
|
493 |
+
# This results in variable allocation of parameters in FFN layer.
|
494 |
+
# This scaling is known as layer-wise or block-wise scaling: https://arxiv.org/abs/2008.00623
|
495 |
+
if len(self.ffn_multipliers) == 2:
|
496 |
+
self.ffn_multipliers = [
|
497 |
+
round(v, 2)
|
498 |
+
for v in np.linspace(
|
499 |
+
self.ffn_multipliers[0],
|
500 |
+
self.ffn_multipliers[1],
|
501 |
+
num=self.num_transformer_layers,
|
502 |
+
dtype=float,
|
503 |
+
)
|
504 |
+
]
|
505 |
+
else:
|
506 |
+
assert (
|
507 |
+
len(self.ffn_multipliers) == self.num_transformer_layers
|
508 |
+
), f"{len(self.ffn_multipliers)=}!={self.num_transformer_layers=}"
|
509 |
+
else:
|
510 |
+
raise NotImplementedError(
|
511 |
+
f"FFN multipliers should be a single number or a list containing exactly two numbers. Got: {qkv_multipliers}."
|
512 |
+
)
|
513 |
+
|
514 |
+
# check num_query_heads divisible by num_kv_heads for every layer
|
515 |
+
for layer_idx in range(len(query_dims)):
|
516 |
+
assert self.num_query_heads[layer_idx] % self.num_kv_heads[layer_idx] == 0
|
517 |
+
|
518 |
+
class OpenELMRMSNorm(nn.Module):
|
519 |
+
def __init__(self, num_features: int, eps: float = 1e-6):
|
520 |
+
"""
|
521 |
+
Initialize the OpenELMRMSNorm normalization layer.
|
522 |
+
Args:
|
523 |
+
dim (int): The dimension of the input tensor.
|
524 |
+
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6.
|
525 |
+
Attributes:
|
526 |
+
eps (float): A small value added to the denominator for numerical stability.
|
527 |
+
weight (nn.Parameter): Learnable scaling parameter.
|
528 |
+
"""
|
529 |
+
super().__init__()
|
530 |
+
self.eps = eps
|
531 |
+
self.weight = nn.Parameter(torch.ones(num_features))
|
532 |
+
self.num_features = num_features
|
533 |
+
|
534 |
+
def _norm(self, x: Tensor) -> Tensor:
|
535 |
+
"""
|
536 |
+
Apply the OpenELMRMSNorm normalization to the input tensor.
|
537 |
+
Args:
|
538 |
+
x (torch.Tensor): The input tensor.
|
539 |
+
Returns:
|
540 |
+
torch.Tensor: The normalized tensor.
|
541 |
+
"""
|
542 |
+
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
|
543 |
+
|
544 |
+
def forward(self, x: Tensor) -> Tensor:
|
545 |
+
"""
|
546 |
+
Forward pass through the OpenELMRMSNorm layer.
|
547 |
+
Args:
|
548 |
+
x (torch.Tensor): The input tensor.
|
549 |
+
Returns:
|
550 |
+
torch.Tensor: The output tensor after applying OpenELMRMSNorm.
|
551 |
+
"""
|
552 |
+
output = self._norm(x.float()).type_as(x)
|
553 |
+
return output * self.weight
|
554 |
+
|
555 |
+
def extra_repr(self) -> str:
|
556 |
+
return (
|
557 |
+
super().extra_repr() + f"num_features={self.num_features}, eps={self.eps}"
|
558 |
+
)
|
559 |
+
|
560 |
+
|
561 |
+
class OpenELMPreTrainedModel(PreTrainedModel):
|
562 |
+
config_class = OpenELMConfig
|
563 |
+
base_model_prefix = "transformer"
|
564 |
+
supports_gradient_checkpointing = True
|
565 |
+
_no_split_modules = ["OpenELMDecoderLayer"]
|
566 |
+
_skip_keys_device_placement = "past_key_values"
|
567 |
+
|
568 |
+
def __init__(self, *inputs, **kwargs) -> None:
|
569 |
+
super().__init__(*inputs, **kwargs)
|
570 |
+
|
571 |
+
def _init_weights(self, module: nn.Module) -> None:
|
572 |
+
"""Initialize the weights."""
|
573 |
+
if isinstance(module, nn.Linear):
|
574 |
+
# Slightly different from the TF version which uses truncated_normal for initialization
|
575 |
+
# cf https://github.com/pytorch/pytorch/pull/5617
|
576 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
577 |
+
if module.bias is not None:
|
578 |
+
module.bias.data.zero_()
|
579 |
+
elif isinstance(module, nn.Embedding):
|
580 |
+
module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
|
581 |
+
if module.padding_idx is not None:
|
582 |
+
module.weight.data[module.padding_idx].zero_()
|
583 |
+
elif isinstance(module, OpenELMRMSNorm):
|
584 |
+
module.weight.data.fill_(1.0)
|
585 |
+
|
586 |
+
|
587 |
+
def _rotate_half(x: Tensor) -> Tensor:
|
588 |
+
x1, x2 = x.chunk(2, dim=-1)
|
589 |
+
return torch.cat((-x2, x1), dim=-1)
|
590 |
+
|
591 |
+
|
592 |
+
def _apply_rotary_pos_emb(x: Tensor, pos_sin: Tensor, pos_cos: Tensor) -> Tensor:
|
593 |
+
return (x * pos_cos) + (_rotate_half(x) * pos_sin)
|
594 |
+
|
595 |
+
|
596 |
+
class OpenELMRotaryEmbedding(torch.nn.Module):
|
597 |
+
"""
|
598 |
+
The rotary position embeddings (aka RoPE) from `RoFormer <https://arxiv.org/abs/2104.09864>`_.
|
599 |
+
RoPE encodes the position information of tokens using a rotation matrix, and is able to capture
|
600 |
+
explicit relative positional dependencies.
|
601 |
+
Args:
|
602 |
+
model_dim: The dimensionality of the model's hidden state.
|
603 |
+
max_seq_length: Maximum sequence length.
|
604 |
+
freq_constant: A constant used for computing frequencies.
|
605 |
+
"""
|
606 |
+
|
607 |
+
def __init__(
|
608 |
+
self, model_dim: int, max_seq_length: int, freq_constant: int = 10000
|
609 |
+
) -> None:
|
610 |
+
inv_freq = 1.0 / (
|
611 |
+
freq_constant
|
612 |
+
** (torch.arange(0, model_dim, 2, dtype=torch.float32) / model_dim)
|
613 |
+
)
|
614 |
+
super().__init__()
|
615 |
+
|
616 |
+
self.model_dim = model_dim
|
617 |
+
self.freq_constant = freq_constant
|
618 |
+
self.max_seq_length = max_seq_length
|
619 |
+
|
620 |
+
self.register_buffer("inv_freq", inv_freq, persistent=False)
|
621 |
+
self._cached_cos = None
|
622 |
+
self._cached_sin = None
|
623 |
+
self._cached_seq_length = max_seq_length
|
624 |
+
self._compute_sin_cos_embeddings(max_seq_length)
|
625 |
+
|
626 |
+
def extra_repr(self) -> str:
|
627 |
+
return f"\tmodel_dim={self.model_dim}, max_seq_length={self.max_seq_length}, freq_constant={self.freq_constant}"
|
628 |
+
|
629 |
+
def _compute_sin_cos_embeddings(
|
630 |
+
self,
|
631 |
+
key_len: int,
|
632 |
+
key_device: torch.device = torch.device("cpu"),
|
633 |
+
key_dtype: torch.dtype = torch.float32,
|
634 |
+
) -> None:
|
635 |
+
"""
|
636 |
+
Compute sine and cos embeddings.
|
637 |
+
Args:
|
638 |
+
key_len: Number of tokens in the key embeddings in the transformer model.
|
639 |
+
device: Device where the key embeddings are stored.
|
640 |
+
key_dtype: Data type of the key embeddings.
|
641 |
+
Returns:
|
642 |
+
None
|
643 |
+
...note:
|
644 |
+
We recalculate the sine and cosine embeddings if any of the following conditions are met:
|
645 |
+
1. The number of tokens in key embeddings are greater than the cached sequence length.
|
646 |
+
2. Sine and cosine caches are empty.
|
647 |
+
3. The device and data type of sine and cosine embeddings does not match with the key embeddings.
|
648 |
+
"""
|
649 |
+
if (
|
650 |
+
key_len > self._cached_seq_length
|
651 |
+
or self._cached_cos is None
|
652 |
+
or (self._cached_cos is not None and self._cached_cos.device != key_device)
|
653 |
+
or (self._cached_cos is not None and self._cached_cos.dtype != key_dtype)
|
654 |
+
or self._cached_sin is None
|
655 |
+
or (self._cached_sin is not None and self._cached_sin.device != key_device)
|
656 |
+
or (self._cached_sin is not None and self._cached_sin.dtype != key_dtype)
|
657 |
+
):
|
658 |
+
self._cached_seq_length = max(key_len, self._cached_seq_length)
|
659 |
+
|
660 |
+
# The shape of 'pos_index' is [number of key tokens]
|
661 |
+
pos_index = torch.arange(
|
662 |
+
self._cached_seq_length,
|
663 |
+
dtype=torch.float32,
|
664 |
+
device=self.inv_freq.device,
|
665 |
+
)
|
666 |
+
# The shape of 'pos_index_theta' is [number of key tokens, model dimension]
|
667 |
+
pos_index_theta = torch.einsum("i,j->ij", pos_index, self.inv_freq)
|
668 |
+
# The shape of 'emb' is [number of key tokens, model dimension]
|
669 |
+
emb = torch.cat((pos_index_theta, pos_index_theta), dim=-1)
|
670 |
+
|
671 |
+
# the shape of cos and sin embeddings is [number of key tokens, model_dim]
|
672 |
+
cos_emb = emb.cos().to(dtype=key_dtype, device=key_device)
|
673 |
+
sin_emb = emb.sin().to(dtype=key_dtype, device=key_device)
|
674 |
+
|
675 |
+
# the shape of cached cos and sin embeddings is [1, 1, number of key tokens, model_dim]
|
676 |
+
self._cached_cos = cos_emb[None, None, :, :]
|
677 |
+
self._cached_sin = sin_emb[None, None, :, :]
|
678 |
+
|
679 |
+
def forward(
|
680 |
+
self,
|
681 |
+
query: torch.Tensor,
|
682 |
+
key: torch.Tensor,
|
683 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
684 |
+
"""
|
685 |
+
The forward function of RoPE embeddings.
|
686 |
+
Args:
|
687 |
+
query: Query embeddings in the transformer model. The shape of query embeddings is
|
688 |
+
[Batch, number of query heads, number of query tokens, model dimension].
|
689 |
+
key: Key embeddings in the transformer model. The shape of key embeddings is
|
690 |
+
[Batch, number of key heads, number of key tokens, model dimension].
|
691 |
+
Returns:
|
692 |
+
A tuple containing the query and key embeddings with positional information. The shape of the returned query
|
693 |
+
and key embeddings is the same as the input query and key embeddings respectively.
|
694 |
+
...note:
|
695 |
+
The RoPE embedding computation is done in full-precision. After the computation, input query and key tensors
|
696 |
+
are casted to original input datatype.
|
697 |
+
"""
|
698 |
+
dim = key.shape[-1]
|
699 |
+
key_len = key.shape[2]
|
700 |
+
query_len = query.shape[2]
|
701 |
+
|
702 |
+
assert dim == self.model_dim
|
703 |
+
assert key.device == query.device
|
704 |
+
assert key.dtype == query.dtype
|
705 |
+
|
706 |
+
# In the context of self-attention, the lengths of keys and queries are equal.
|
707 |
+
# However, in generation tasks, such as predicting the next token in a sequence, the lengths of keys and queries
|
708 |
+
# can differ. For instance, when employing key-value (KV) caching for sequence prediction, the keys
|
709 |
+
# represent embeddings of previous tokens and the current token, while the query corresponds
|
710 |
+
# to the embedding of the current token only.
|
711 |
+
assert (
|
712 |
+
key_len >= query_len
|
713 |
+
), "Number of keys has to be greater than or equal to number of queries."
|
714 |
+
|
715 |
+
query_float = query.float()
|
716 |
+
key_float = key.float()
|
717 |
+
|
718 |
+
self._compute_sin_cos_embeddings(
|
719 |
+
key_len, key_device=key_float.device, key_dtype=key_float.dtype
|
720 |
+
)
|
721 |
+
query_float = _apply_rotary_pos_emb(
|
722 |
+
x=query_float,
|
723 |
+
pos_sin=self._cached_sin[..., key_len - query_len : key_len, :],
|
724 |
+
pos_cos=self._cached_cos[..., key_len - query_len : key_len, :],
|
725 |
+
)
|
726 |
+
key_float = _apply_rotary_pos_emb(
|
727 |
+
x=key_float,
|
728 |
+
pos_sin=self._cached_sin[..., :key_len, :],
|
729 |
+
pos_cos=self._cached_cos[..., :key_len, :],
|
730 |
+
)
|
731 |
+
|
732 |
+
return query_float.type_as(query), key_float.type_as(key)
|
733 |
+
|
734 |
+
|
735 |
+
class OpenELMMultiHeadCausalAttention(nn.Module):
|
736 |
+
def __init__(self, config: OpenELMConfig, layer_idx: int) -> None:
|
737 |
+
super().__init__()
|
738 |
+
self.layer_idx = layer_idx
|
739 |
+
head_dim = config.head_dim
|
740 |
+
q_heads = config.num_query_heads[layer_idx]
|
741 |
+
k_heads = config.num_kv_heads[layer_idx]
|
742 |
+
v_heads = config.num_kv_heads[layer_idx]
|
743 |
+
|
744 |
+
self.qkv_proj = nn.Linear(
|
745 |
+
in_features=config.model_dim,
|
746 |
+
out_features=(q_heads + k_heads + v_heads) * head_dim,
|
747 |
+
bias=False,
|
748 |
+
)
|
749 |
+
|
750 |
+
self.pos_embedding = OpenELMRotaryEmbedding(
|
751 |
+
model_dim=config.head_dim,
|
752 |
+
max_seq_length=config.rope_max_length,
|
753 |
+
freq_constant=config.rope_freq_constant,
|
754 |
+
)
|
755 |
+
|
756 |
+
if config.normalize_qk_projections:
|
757 |
+
self.q_norm = OpenELMRMSNorm(
|
758 |
+
num_features=config.head_dim,
|
759 |
+
)
|
760 |
+
self.k_norm = OpenELMRMSNorm(
|
761 |
+
num_features=config.head_dim,
|
762 |
+
)
|
763 |
+
else:
|
764 |
+
self.q_norm = None
|
765 |
+
self.k_norm = None
|
766 |
+
|
767 |
+
self.out_proj = nn.Linear(
|
768 |
+
in_features=q_heads * head_dim,
|
769 |
+
out_features=config.model_dim,
|
770 |
+
bias=False,
|
771 |
+
)
|
772 |
+
|
773 |
+
self.head_dim = config.head_dim
|
774 |
+
self.num_q_heads = q_heads
|
775 |
+
self.num_k_heads = k_heads
|
776 |
+
self.num_v_heads = v_heads
|
777 |
+
self.transformer_dim = config.model_dim
|
778 |
+
self.num_groups = self.num_q_heads // self.num_k_heads
|
779 |
+
|
780 |
+
def extra_repr(self) -> str:
|
781 |
+
return (
|
782 |
+
super().extra_repr()
|
783 |
+
+ f"query_heads={self.num_q_heads}, key_heads={self.num_k_heads}, value_heads={self.num_v_heads}"
|
784 |
+
)
|
785 |
+
|
786 |
+
def forward(
|
787 |
+
self,
|
788 |
+
hidden_states: torch.Tensor,
|
789 |
+
attention_mask: Optional[torch.Tensor] = None,
|
790 |
+
past_key_value: Optional[Cache] = None,
|
791 |
+
output_attentions: bool = False,
|
792 |
+
use_cache: bool = False,
|
793 |
+
cache_position: Optional[torch.LongTensor] = None,
|
794 |
+
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
795 |
+
"""
|
796 |
+
Forward pass of multi-head self-attention.
|
797 |
+
Args:
|
798 |
+
hidden_states: Input tensor of the shape [batch size, sequence length, model dimension].
|
799 |
+
past_key_value: Tensor storing the cached keys and values.
|
800 |
+
output_attentions: output attention weights.
|
801 |
+
use_cache: Specifies whether to use kv-cache for generation.
|
802 |
+
cache_position: used for updating the kv-cache.
|
803 |
+
Returns:
|
804 |
+
The output of the same shape as the input, optionally with a tensor containing cached keys and values.
|
805 |
+
"""
|
806 |
+
|
807 |
+
# scaled_dot_product_attention does not return attention weights, set output_attentions to False
|
808 |
+
output_attentions = False
|
809 |
+
batch_size, seq_length, d_model = hidden_states.size()
|
810 |
+
|
811 |
+
# [B, S, d] --> [B, S, (q_h + k_h + v_h) * h]
|
812 |
+
qkv = self.qkv_proj(hidden_states)
|
813 |
+
# [B, S, (q_h + k_h + v_h) * h] --> [B, S, (q_h + k_h + v_h), h]
|
814 |
+
qkv = qkv.reshape(
|
815 |
+
batch_size,
|
816 |
+
seq_length,
|
817 |
+
self.num_q_heads + self.num_k_heads + self.num_v_heads,
|
818 |
+
self.head_dim,
|
819 |
+
)
|
820 |
+
# [B, S, (q_h + k_h + v_h), h] --> [B, (q_h + k_h + v_h), S, h]
|
821 |
+
qkv = qkv.transpose(1, 2)
|
822 |
+
# [B, (q_h + k_h + v_h), S, h] --> [B, q_h, S h], [B, k_h, S, h], [B, v_h, S, h]
|
823 |
+
queries, keys, values = qkv.split(
|
824 |
+
[self.num_q_heads, self.num_k_heads, self.num_v_heads], dim=1
|
825 |
+
)
|
826 |
+
|
827 |
+
if self.q_norm is not None:
|
828 |
+
queries = self.q_norm(queries)
|
829 |
+
|
830 |
+
if self.k_norm is not None:
|
831 |
+
keys = self.k_norm(keys)
|
832 |
+
|
833 |
+
past_key_value = getattr(self, "past_key_value", past_key_value)
|
834 |
+
|
835 |
+
if past_key_value is not None:
|
836 |
+
# sin and cos are specific to RoPE models; position_ids needed for the static cache
|
837 |
+
# cache_kwargs = {"sin": sin, "cos": cos, "cache_position": cache_position}
|
838 |
+
cache_kwargs = {"cache_position": cache_position}
|
839 |
+
keys, values = past_key_value.update(
|
840 |
+
keys, values, self.layer_idx, cache_kwargs
|
841 |
+
)
|
842 |
+
|
843 |
+
# Add positional embedding
|
844 |
+
queries, keys = self.pos_embedding(queries, keys)
|
845 |
+
|
846 |
+
if self.num_groups != 1:
|
847 |
+
# GQA
|
848 |
+
# [B, k_h, S, h] --> [B, q_h, S, h]
|
849 |
+
keys = keys.repeat_interleave(self.num_groups, dim=1)
|
850 |
+
# [B, v_h, S, h] --> [B, q_h, S, h]
|
851 |
+
values = values.repeat_interleave(self.num_groups, dim=1)
|
852 |
+
|
853 |
+
causal_mask = attention_mask
|
854 |
+
if attention_mask is not None and cache_position is not None:
|
855 |
+
causal_mask = causal_mask[:, :, cache_position, : keys.shape[-2]]
|
856 |
+
|
857 |
+
attn_output = F.scaled_dot_product_attention(
|
858 |
+
queries,
|
859 |
+
keys,
|
860 |
+
values,
|
861 |
+
attn_mask=causal_mask,
|
862 |
+
dropout_p=0,
|
863 |
+
)
|
864 |
+
|
865 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
866 |
+
attn_output = attn_output.reshape(
|
867 |
+
batch_size, seq_length, self.num_q_heads * self.head_dim
|
868 |
+
)
|
869 |
+
attn_output = self.out_proj(attn_output)
|
870 |
+
if not output_attentions:
|
871 |
+
attn_weights = None
|
872 |
+
return attn_output, attn_weights, past_key_value
|
873 |
+
|
874 |
+
|
875 |
+
class OpenELMFeedForwardNetwork(nn.Module):
|
876 |
+
def __init__(self, config: OpenELMConfig, layer_idx: int) -> None:
|
877 |
+
super().__init__()
|
878 |
+
ffn_multiplier = config.ffn_multipliers[layer_idx]
|
879 |
+
intermediate_dim = int(
|
880 |
+
make_divisible(
|
881 |
+
ffn_multiplier * config.model_dim,
|
882 |
+
divisor=config.ffn_dim_divisor,
|
883 |
+
)
|
884 |
+
)
|
885 |
+
if config.ffn_with_glu:
|
886 |
+
# FFN with Gated linear unit, as described in https://arxiv.org/abs/2002.05202v1.
|
887 |
+
self.proj_1 = nn.Linear(
|
888 |
+
in_features=config.model_dim,
|
889 |
+
out_features=2 * intermediate_dim,
|
890 |
+
bias=False,
|
891 |
+
)
|
892 |
+
self.proj_2 = nn.Linear(
|
893 |
+
in_features=intermediate_dim,
|
894 |
+
out_features=config.model_dim,
|
895 |
+
bias=False,
|
896 |
+
)
|
897 |
+
self.ffn_with_glu = True
|
898 |
+
else:
|
899 |
+
# Standard FFN, as described in https://arxiv.org/abs/1706.03762
|
900 |
+
self.proj_1 = nn.Linear(
|
901 |
+
in_features=config.model_dim,
|
902 |
+
out_features=intermediate_dim,
|
903 |
+
bias=False,
|
904 |
+
)
|
905 |
+
self.proj_2 = nn.Linear(
|
906 |
+
in_features=intermediate_dim,
|
907 |
+
out_features=config.model_dim,
|
908 |
+
bias=False,
|
909 |
+
)
|
910 |
+
self.ffn_with_glu = False
|
911 |
+
|
912 |
+
self.act = ACT2FN[config.activation_fn_name]
|
913 |
+
|
914 |
+
def extra_repr(self) -> str:
|
915 |
+
return super().extra_repr() + f"(ffn_with_glu) : {self.ffn_with_glu}"
|
916 |
+
|
917 |
+
def forward(self, x: Tensor) -> Tensor:
|
918 |
+
"""Forward function of FFN layer.
|
919 |
+
Args:
|
920 |
+
x: Input tensor of the shape [batch size, sequence length, model dimension].
|
921 |
+
Returns:
|
922 |
+
A tensor of the same shape as the input.
|
923 |
+
"""
|
924 |
+
if self.ffn_with_glu:
|
925 |
+
y_12 = self.proj_1(x)
|
926 |
+
y_1, y_2 = y_12.chunk(2, dim=-1)
|
927 |
+
y = self.act(y_1) * y_2
|
928 |
+
return self.proj_2(y)
|
929 |
+
else:
|
930 |
+
return self.proj_2(self.act(self.proj_1(x)))
|
931 |
+
|
932 |
+
|
933 |
+
class OpenELMDecoderLayer(nn.Module):
|
934 |
+
def __init__(self, config: OpenELMConfig, layer_idx: int) -> None:
|
935 |
+
super().__init__()
|
936 |
+
self.attn = OpenELMMultiHeadCausalAttention(config=config, layer_idx=layer_idx)
|
937 |
+
self.ffn = OpenELMFeedForwardNetwork(config=config, layer_idx=layer_idx)
|
938 |
+
self.ffn_norm = OpenELMRMSNorm(
|
939 |
+
num_features=config.model_dim,
|
940 |
+
)
|
941 |
+
self.attn_norm = OpenELMRMSNorm(
|
942 |
+
num_features=config.model_dim,
|
943 |
+
)
|
944 |
+
|
945 |
+
def forward(
|
946 |
+
self,
|
947 |
+
hidden_states: torch.Tensor,
|
948 |
+
attention_mask: Optional[torch.Tensor] = None,
|
949 |
+
position_ids: Optional[torch.LongTensor] = None,
|
950 |
+
past_key_value: Optional[Tuple[torch.Tensor]] = None,
|
951 |
+
output_attentions: Optional[bool] = False,
|
952 |
+
use_cache: Optional[bool] = False,
|
953 |
+
cache_position: Optional[torch.LongTensor] = None,
|
954 |
+
**kwargs,
|
955 |
+
) -> Tuple[
|
956 |
+
torch.FloatTensor, Optional[Tuple[torch.FloatTensor, torch.FloatTensor]]
|
957 |
+
]:
|
958 |
+
"""
|
959 |
+
Args:
|
960 |
+
hidden_states (`torch.FloatTensor`): input to the layer of shape `(batch, seq_len, embed_dim)`
|
961 |
+
attention_mask (`torch.FloatTensor`, *optional*):
|
962 |
+
attention mask of size `(batch_size, sequence_length)` if flash attention is used or `(batch_size, 1,
|
963 |
+
query_sequence_length, key_sequence_length)` if default attention is used.
|
964 |
+
output_attentions (`bool`, *optional*):
|
965 |
+
Whether or not to return the attentions tensors of all attention layers. See `attentions` under
|
966 |
+
returned tensors for more detail.
|
967 |
+
use_cache (`bool`, *optional*):
|
968 |
+
If set to `True`, `past_key_values` key value states are returned and can be used to speed up decoding
|
969 |
+
(see `past_key_values`).
|
970 |
+
past_key_value (`Tuple(torch.FloatTensor)`, *optional*): cached past key and value projection states
|
971 |
+
"""
|
972 |
+
residual = hidden_states
|
973 |
+
hidden_states = self.attn_norm(hidden_states)
|
974 |
+
|
975 |
+
# Self Attention
|
976 |
+
hidden_states, self_attn_weights, present_key_value = self.attn(
|
977 |
+
hidden_states=hidden_states,
|
978 |
+
attention_mask=attention_mask,
|
979 |
+
past_key_value=past_key_value,
|
980 |
+
output_attentions=output_attentions,
|
981 |
+
use_cache=use_cache,
|
982 |
+
cache_position=cache_position,
|
983 |
+
**kwargs,
|
984 |
+
)
|
985 |
+
hidden_states = residual + hidden_states
|
986 |
+
|
987 |
+
# Fully Connected
|
988 |
+
residual = hidden_states
|
989 |
+
hidden_states = self.ffn_norm(hidden_states)
|
990 |
+
hidden_states = self.ffn(hidden_states)
|
991 |
+
hidden_states = residual + hidden_states
|
992 |
+
|
993 |
+
outputs = (hidden_states,)
|
994 |
+
|
995 |
+
if output_attentions:
|
996 |
+
outputs += (self_attn_weights,)
|
997 |
+
|
998 |
+
if use_cache:
|
999 |
+
outputs += (present_key_value,)
|
1000 |
+
|
1001 |
+
return outputs
|
1002 |
+
|
1003 |
+
|
1004 |
+
class OpenELMModel(OpenELMPreTrainedModel):
|
1005 |
+
config_class = OpenELMConfig
|
1006 |
+
|
1007 |
+
def __init__(self, config: OpenELMConfig):
|
1008 |
+
super().__init__(config)
|
1009 |
+
self.config = config
|
1010 |
+
|
1011 |
+
self.token_embeddings = nn.Embedding(
|
1012 |
+
embedding_dim=config.model_dim,
|
1013 |
+
num_embeddings=config.vocab_size,
|
1014 |
+
)
|
1015 |
+
|
1016 |
+
self.layers = nn.ModuleList(
|
1017 |
+
OpenELMDecoderLayer(config=config, layer_idx=layer_idx)
|
1018 |
+
for layer_idx in range(config.num_transformer_layers)
|
1019 |
+
)
|
1020 |
+
self.norm = OpenELMRMSNorm(num_features=config.model_dim)
|
1021 |
+
if config.share_input_output_layers:
|
1022 |
+
self.classifier = None
|
1023 |
+
else:
|
1024 |
+
self.classifier = nn.Linear(
|
1025 |
+
in_features=config.model_dim,
|
1026 |
+
out_features=config.vocab_size,
|
1027 |
+
bias=False,
|
1028 |
+
)
|
1029 |
+
self.num_transformer_layers = config.num_transformer_layers
|
1030 |
+
self.gradient_checkpointing = False
|
1031 |
+
|
1032 |
+
# Register a causal mask to separate causal and padding mask creation. Merging happens in the attention class.
|
1033 |
+
# NOTE: This is not friendly with TorchScript, ONNX, ExportedProgram serialization for very large `max_context_length`.
|
1034 |
+
causal_mask = torch.full(
|
1035 |
+
(config.max_context_length, config.max_context_length),
|
1036 |
+
fill_value=True,
|
1037 |
+
dtype=torch.bool,
|
1038 |
+
)
|
1039 |
+
self.register_buffer(
|
1040 |
+
"causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False
|
1041 |
+
)
|
1042 |
+
|
1043 |
+
# Initialize weights and apply final processing
|
1044 |
+
self.post_init()
|
1045 |
+
self.reset_parameters(config=config)
|
1046 |
+
|
1047 |
+
def get_input_embeddings(self):
|
1048 |
+
return self.token_embeddings
|
1049 |
+
|
1050 |
+
def set_input_embeddings(self, new_embeddings: torch.Tensor):
|
1051 |
+
self.token_embeddings = new_embeddings
|
1052 |
+
|
1053 |
+
def reset_parameters(self, config: OpenELMConfig) -> None:
|
1054 |
+
"""Initialize the layers in Language Model
|
1055 |
+
The initialization scheme is followed, following `OPT <https://arxiv.org/pdf/2205.01068.pdf>`_.
|
1056 |
+
Args:
|
1057 |
+
use_megatron_std: Use standard deviation as described in Megatron-LM.
|
1058 |
+
Returns:
|
1059 |
+
None
|
1060 |
+
"""
|
1061 |
+
for module in self.modules():
|
1062 |
+
if isinstance(module, nn.Linear):
|
1063 |
+
std = module.in_features**-0.5
|
1064 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
|
1065 |
+
if module.bias is not None:
|
1066 |
+
torch.nn.init.zeros_(module.bias)
|
1067 |
+
elif isinstance(module, nn.Embedding):
|
1068 |
+
std = module.embedding_dim**-0.5
|
1069 |
+
torch.nn.init.normal_(module.weight, mean=0.0, std=std)
|
1070 |
+
elif isinstance(module, OpenELMRMSNorm):
|
1071 |
+
if module.weight is not None:
|
1072 |
+
torch.nn.init.ones_(module.weight)
|
1073 |
+
if hasattr(module, "bias") and module.bias is not None:
|
1074 |
+
torch.nn.init.zeros_(module.bias)
|
1075 |
+
|
1076 |
+
model_dim = config.model_dim
|
1077 |
+
n_layers = config.num_transformer_layers
|
1078 |
+
std = (model_dim**-0.5) * ((2 * n_layers) ** -0.5)
|
1079 |
+
for param_name, param in self.named_parameters():
|
1080 |
+
if param_name.endswith("out_proj.weight") or param_name.endswith(
|
1081 |
+
"ffn.proj_2.weight"
|
1082 |
+
):
|
1083 |
+
torch.nn.init.normal_(param, mean=0.0, std=std)
|
1084 |
+
|
1085 |
+
def forward(
|
1086 |
+
self,
|
1087 |
+
input_ids: torch.LongTensor = None,
|
1088 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1089 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1090 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1091 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1092 |
+
use_cache: Optional[bool] = None,
|
1093 |
+
output_attentions: Optional[bool] = None,
|
1094 |
+
output_hidden_states: Optional[bool] = None,
|
1095 |
+
return_dict: Optional[bool] = None,
|
1096 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1097 |
+
) -> Union[Tuple, BaseModelOutputWithPast]:
|
1098 |
+
output_attentions = (
|
1099 |
+
output_attentions
|
1100 |
+
if output_attentions is not None
|
1101 |
+
else self.config.output_attentions
|
1102 |
+
)
|
1103 |
+
output_hidden_states = (
|
1104 |
+
output_hidden_states
|
1105 |
+
if output_hidden_states is not None
|
1106 |
+
else self.config.output_hidden_states
|
1107 |
+
)
|
1108 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1109 |
+
return_dict = (
|
1110 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1111 |
+
)
|
1112 |
+
|
1113 |
+
if (input_ids is None) ^ (inputs_embeds is not None):
|
1114 |
+
raise ValueError(
|
1115 |
+
"You cannot specify both input_ids and inputs_embeds at the same time, and must specify either one"
|
1116 |
+
)
|
1117 |
+
|
1118 |
+
if self.gradient_checkpointing and self.training and use_cache:
|
1119 |
+
logger.warning_once(
|
1120 |
+
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`."
|
1121 |
+
)
|
1122 |
+
use_cache = False
|
1123 |
+
|
1124 |
+
if inputs_embeds is None:
|
1125 |
+
inputs_embeds = self.token_embeddings(input_ids)
|
1126 |
+
|
1127 |
+
past_seen_tokens = 0
|
1128 |
+
if use_cache: # kept for BC (cache positions)
|
1129 |
+
if not isinstance(past_key_values, StaticCache):
|
1130 |
+
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
1131 |
+
past_seen_tokens = past_key_values.get_seq_length()
|
1132 |
+
|
1133 |
+
if cache_position is None:
|
1134 |
+
cache_position = torch.arange(
|
1135 |
+
past_seen_tokens,
|
1136 |
+
past_seen_tokens + inputs_embeds.shape[1],
|
1137 |
+
device=inputs_embeds.device,
|
1138 |
+
)
|
1139 |
+
|
1140 |
+
if position_ids is None:
|
1141 |
+
position_ids = cache_position.unsqueeze(0)
|
1142 |
+
|
1143 |
+
causal_mask = self._update_causal_mask(attention_mask, inputs_embeds)
|
1144 |
+
|
1145 |
+
# embed positions
|
1146 |
+
hidden_states = inputs_embeds
|
1147 |
+
|
1148 |
+
# decoder layers
|
1149 |
+
all_hidden_states = () if output_hidden_states else None
|
1150 |
+
all_self_attns = () if output_attentions else None
|
1151 |
+
next_decoder_cache = None
|
1152 |
+
|
1153 |
+
for decoder_layer in self.layers:
|
1154 |
+
if output_hidden_states:
|
1155 |
+
all_hidden_states += (hidden_states,)
|
1156 |
+
|
1157 |
+
if self.gradient_checkpointing and self.training:
|
1158 |
+
layer_outputs = self._gradient_checkpointing_func(
|
1159 |
+
decoder_layer.__call__,
|
1160 |
+
hidden_states,
|
1161 |
+
causal_mask,
|
1162 |
+
position_ids,
|
1163 |
+
past_key_values,
|
1164 |
+
output_attentions,
|
1165 |
+
use_cache,
|
1166 |
+
cache_position,
|
1167 |
+
)
|
1168 |
+
else:
|
1169 |
+
layer_outputs = decoder_layer(
|
1170 |
+
hidden_states,
|
1171 |
+
attention_mask=causal_mask,
|
1172 |
+
position_ids=position_ids,
|
1173 |
+
past_key_value=past_key_values,
|
1174 |
+
output_attentions=output_attentions,
|
1175 |
+
use_cache=use_cache,
|
1176 |
+
cache_position=cache_position,
|
1177 |
+
)
|
1178 |
+
|
1179 |
+
hidden_states = layer_outputs[0]
|
1180 |
+
|
1181 |
+
if use_cache:
|
1182 |
+
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
1183 |
+
|
1184 |
+
if output_attentions:
|
1185 |
+
all_self_attns += (layer_outputs[1],)
|
1186 |
+
|
1187 |
+
hidden_states = self.norm(hidden_states)
|
1188 |
+
|
1189 |
+
# add hidden states from the last decoder layer
|
1190 |
+
if output_hidden_states:
|
1191 |
+
all_hidden_states += (hidden_states,)
|
1192 |
+
|
1193 |
+
next_cache = None
|
1194 |
+
if use_cache:
|
1195 |
+
next_cache = (
|
1196 |
+
next_decoder_cache.to_legacy_cache()
|
1197 |
+
if isinstance(next_decoder_cache, Cache)
|
1198 |
+
else next_decoder_cache
|
1199 |
+
)
|
1200 |
+
if not return_dict:
|
1201 |
+
return tuple(
|
1202 |
+
v
|
1203 |
+
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns]
|
1204 |
+
if v is not None
|
1205 |
+
)
|
1206 |
+
return BaseModelOutputWithPast(
|
1207 |
+
last_hidden_state=hidden_states,
|
1208 |
+
past_key_values=next_cache,
|
1209 |
+
hidden_states=all_hidden_states,
|
1210 |
+
attentions=all_self_attns,
|
1211 |
+
)
|
1212 |
+
|
1213 |
+
def _update_causal_mask(self, attention_mask, input_tensor):
|
1214 |
+
if self.config._attn_implementation == "flash_attention_2":
|
1215 |
+
if attention_mask is not None and 0.0 in attention_mask:
|
1216 |
+
return attention_mask
|
1217 |
+
return None
|
1218 |
+
|
1219 |
+
batch_size, seq_length = input_tensor.shape[:2]
|
1220 |
+
dtype = input_tensor.dtype
|
1221 |
+
device = input_tensor.device
|
1222 |
+
|
1223 |
+
# support going beyond cached `max_position_embedding`
|
1224 |
+
if seq_length > self.causal_mask.shape[-1]:
|
1225 |
+
causal_mask = torch.full(
|
1226 |
+
(2 * self.causal_mask.shape[-1], 2 * self.causal_mask.shape[-1]),
|
1227 |
+
fill_value=1,
|
1228 |
+
)
|
1229 |
+
self.register_buffer(
|
1230 |
+
"causal_mask", torch.triu(causal_mask, diagonal=1), persistent=False
|
1231 |
+
)
|
1232 |
+
|
1233 |
+
# We use the current dtype to avoid any overflows
|
1234 |
+
min_dtype = torch.finfo(dtype).min
|
1235 |
+
causal_mask = (
|
1236 |
+
self.causal_mask[None, None, :, :].repeat(batch_size, 1, 1, 1).to(dtype)
|
1237 |
+
* min_dtype
|
1238 |
+
)
|
1239 |
+
|
1240 |
+
causal_mask = causal_mask.to(dtype=dtype, device=device)
|
1241 |
+
if attention_mask is not None and attention_mask.dim() == 2:
|
1242 |
+
mask_length = attention_mask.shape[-1]
|
1243 |
+
padding_mask = causal_mask[..., :mask_length].eq(0.0) * attention_mask[
|
1244 |
+
:, None, None, :
|
1245 |
+
].eq(0.0)
|
1246 |
+
causal_mask[..., :mask_length] = causal_mask[..., :mask_length].masked_fill(
|
1247 |
+
padding_mask, min_dtype
|
1248 |
+
)
|
1249 |
+
|
1250 |
+
if self.config._attn_implementation == "sdpa" and attention_mask is not None:
|
1251 |
+
# For dynamo, rather use a check on fullgraph=True once this is possible (https://github.com/pytorch/pytorch/pull/120400).
|
1252 |
+
is_tracing = (
|
1253 |
+
torch.jit.is_tracing()
|
1254 |
+
or isinstance(input_tensor, torch.fx.Proxy)
|
1255 |
+
or (hasattr(torch, "_dynamo") and torch._dynamo.is_compiling())
|
1256 |
+
)
|
1257 |
+
if not is_tracing and torch.any(attention_mask != 1):
|
1258 |
+
# Attend to all tokens in masked rows from the causal_mask, for example the relevant first rows when
|
1259 |
+
# using left padding. This is required by F.scaled_dot_product_attention memory-efficient attention path.
|
1260 |
+
# Details: https://github.com/pytorch/pytorch/issues/110213
|
1261 |
+
causal_mask = causal_mask.mul(
|
1262 |
+
~torch.all(causal_mask == min_dtype, dim=-1, keepdim=True)
|
1263 |
+
).to(dtype)
|
1264 |
+
|
1265 |
+
return causal_mask
|
1266 |
+
|
1267 |
+
|
1268 |
+
class OpenELMForCausalLM(OpenELMPreTrainedModel):
|
1269 |
+
_tied_weights_keys = ["lm_head.weight"]
|
1270 |
+
|
1271 |
+
def __init__(self, config: OpenELMConfig):
|
1272 |
+
super().__init__(config)
|
1273 |
+
self.transformer = OpenELMModel(config)
|
1274 |
+
self.vocab_size = config.vocab_size
|
1275 |
+
if config.share_input_output_layers:
|
1276 |
+
self.lm_head = None
|
1277 |
+
else:
|
1278 |
+
self.lm_head = nn.Linear(config.model_dim, config.vocab_size, bias=False)
|
1279 |
+
|
1280 |
+
# Initialize weights and apply final processing
|
1281 |
+
self.post_init()
|
1282 |
+
|
1283 |
+
def get_input_embeddings(self):
|
1284 |
+
return self.transformer.token_embeddings
|
1285 |
+
|
1286 |
+
def set_input_embeddings(self, value):
|
1287 |
+
self.transformer.token_embeddings = value
|
1288 |
+
|
1289 |
+
def get_output_embeddings(self):
|
1290 |
+
return self.lm_head
|
1291 |
+
|
1292 |
+
def set_output_embeddings(self, new_embeddings):
|
1293 |
+
self.lm_head = new_embeddings
|
1294 |
+
|
1295 |
+
def set_decoder(self, decoder):
|
1296 |
+
self.transformer = decoder
|
1297 |
+
|
1298 |
+
def get_decoder(self):
|
1299 |
+
return self.transformer
|
1300 |
+
|
1301 |
+
def forward(
|
1302 |
+
self,
|
1303 |
+
input_ids: torch.LongTensor = None,
|
1304 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1305 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1306 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1307 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1308 |
+
labels: Optional[torch.LongTensor] = None,
|
1309 |
+
use_cache: Optional[bool] = None,
|
1310 |
+
output_attentions: Optional[bool] = None,
|
1311 |
+
output_hidden_states: Optional[bool] = None,
|
1312 |
+
return_dict: Optional[bool] = None,
|
1313 |
+
cache_position: Optional[torch.LongTensor] = None,
|
1314 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1315 |
+
output_attentions = (
|
1316 |
+
output_attentions
|
1317 |
+
if output_attentions is not None
|
1318 |
+
else self.config.output_attentions
|
1319 |
+
)
|
1320 |
+
output_hidden_states = (
|
1321 |
+
output_hidden_states
|
1322 |
+
if output_hidden_states is not None
|
1323 |
+
else self.config.output_hidden_states
|
1324 |
+
)
|
1325 |
+
return_dict = (
|
1326 |
+
return_dict if return_dict is not None else self.config.use_return_dict
|
1327 |
+
)
|
1328 |
+
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
1329 |
+
outputs = self.transformer(
|
1330 |
+
input_ids=input_ids,
|
1331 |
+
attention_mask=attention_mask,
|
1332 |
+
position_ids=position_ids,
|
1333 |
+
past_key_values=past_key_values,
|
1334 |
+
inputs_embeds=inputs_embeds,
|
1335 |
+
use_cache=use_cache,
|
1336 |
+
output_attentions=output_attentions,
|
1337 |
+
output_hidden_states=output_hidden_states,
|
1338 |
+
return_dict=return_dict,
|
1339 |
+
cache_position=cache_position,
|
1340 |
+
)
|
1341 |
+
|
1342 |
+
hidden_states = outputs[0]
|
1343 |
+
if self.lm_head is None:
|
1344 |
+
# shared
|
1345 |
+
logits = F.linear(
|
1346 |
+
hidden_states, weight=self.transformer.token_embeddings.weight
|
1347 |
+
)
|
1348 |
+
else:
|
1349 |
+
logits = self.lm_head(hidden_states)
|
1350 |
+
logits = logits[:, : self.config.vocab_size]
|
1351 |
+
loss = None
|
1352 |
+
if labels is not None:
|
1353 |
+
# Shift so that tokens < n predict n
|
1354 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
1355 |
+
shift_labels = labels[..., 1:].contiguous()
|
1356 |
+
# Flatten the tokens
|
1357 |
+
loss_fct = CrossEntropyLoss()
|
1358 |
+
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
1359 |
+
shift_labels = shift_labels.view(-1)
|
1360 |
+
# Enable model parallelism
|
1361 |
+
shift_labels = shift_labels.to(shift_logits.device)
|
1362 |
+
loss = loss_fct(shift_logits, shift_labels)
|
1363 |
+
|
1364 |
+
if not return_dict:
|
1365 |
+
output = (logits,) + outputs[1:]
|
1366 |
+
return (loss,) + output if loss is not None else output
|
1367 |
+
|
1368 |
+
return CausalLMOutputWithPast(
|
1369 |
+
loss=loss,
|
1370 |
+
logits=logits,
|
1371 |
+
past_key_values=outputs.past_key_values,
|
1372 |
+
hidden_states=outputs.hidden_states,
|
1373 |
+
attentions=outputs.attentions,
|
1374 |
+
)
|
1375 |
+
|
1376 |
+
def prepare_inputs_for_generation(
|
1377 |
+
self,
|
1378 |
+
input_ids,
|
1379 |
+
past_key_values=None,
|
1380 |
+
attention_mask=None,
|
1381 |
+
inputs_embeds=None,
|
1382 |
+
**kwargs,
|
1383 |
+
):
|
1384 |
+
past_length = 0
|
1385 |
+
if past_key_values is not None:
|
1386 |
+
if isinstance(past_key_values, Cache):
|
1387 |
+
cache_length = past_key_values.get_seq_length()
|
1388 |
+
past_length = past_key_values.seen_tokens
|
1389 |
+
max_cache_length = past_key_values.get_max_length()
|
1390 |
+
else:
|
1391 |
+
cache_length = past_length = past_key_values[0][0].shape[2]
|
1392 |
+
max_cache_length = None
|
1393 |
+
|
1394 |
+
# Keep only the unprocessed tokens:
|
1395 |
+
# 1 - If the length of the attention_mask exceeds the length of input_ids, then we are in a setting where
|
1396 |
+
# some of the inputs are exclusively passed as part of the cache (e.g. when passing input_embeds as
|
1397 |
+
# input)
|
1398 |
+
if (
|
1399 |
+
attention_mask is not None
|
1400 |
+
and attention_mask.shape[1] > input_ids.shape[1]
|
1401 |
+
):
|
1402 |
+
input_ids = input_ids[:, -(attention_mask.shape[1] - past_length) :]
|
1403 |
+
# 2 - If the past_length is smaller than input_ids', then input_ids holds all input tokens. We can discard
|
1404 |
+
# input_ids based on the past_length.
|
1405 |
+
elif past_length < input_ids.shape[1]:
|
1406 |
+
input_ids = input_ids[:, past_length:]
|
1407 |
+
# 3 - Otherwise (past_length >= input_ids.shape[1]), let's assume input_ids only has unprocessed tokens.
|
1408 |
+
|
1409 |
+
# If we are about to go beyond the maximum cache length, we need to crop the input attention mask.
|
1410 |
+
if (
|
1411 |
+
max_cache_length is not None
|
1412 |
+
and attention_mask is not None
|
1413 |
+
and cache_length + input_ids.shape[1] > max_cache_length
|
1414 |
+
):
|
1415 |
+
attention_mask = attention_mask[:, -max_cache_length:]
|
1416 |
+
|
1417 |
+
position_ids = kwargs.get("position_ids", None)
|
1418 |
+
if attention_mask is not None and position_ids is None:
|
1419 |
+
# create position_ids on the fly for batch generation
|
1420 |
+
position_ids = attention_mask.long().cumsum(-1) - 1
|
1421 |
+
position_ids.masked_fill_(attention_mask == 0, 1)
|
1422 |
+
if past_key_values:
|
1423 |
+
position_ids = position_ids[:, -input_ids.shape[1] :]
|
1424 |
+
|
1425 |
+
if self.generation_config.cache_implementation == "static":
|
1426 |
+
# generation with static cache
|
1427 |
+
cache_position = kwargs.get("cache_position", None)
|
1428 |
+
if cache_position is None:
|
1429 |
+
past_length = 0
|
1430 |
+
else:
|
1431 |
+
past_length = cache_position[-1] + 1
|
1432 |
+
input_ids = input_ids[:, past_length:]
|
1433 |
+
position_ids = position_ids[:, past_length:]
|
1434 |
+
|
1435 |
+
# we should only keep a `cache_position` in generate, and do +=1.
|
1436 |
+
# same goes for position ids. Could also help with continued generation.
|
1437 |
+
cache_position = torch.arange(
|
1438 |
+
past_length,
|
1439 |
+
past_length + position_ids.shape[-1],
|
1440 |
+
device=position_ids.device,
|
1441 |
+
)
|
1442 |
+
|
1443 |
+
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
1444 |
+
if inputs_embeds is not None and past_key_values is None:
|
1445 |
+
model_inputs = {"inputs_embeds": inputs_embeds}
|
1446 |
+
else:
|
1447 |
+
# The `contiguous()` here is necessary to have a static stride during decoding. torchdynamo otherwise
|
1448 |
+
# recompiles graphs as the stride of the inputs is a guard. Ref: https://github.com/huggingface/transformers/pull/29114
|
1449 |
+
# We could use `next_tokens` directly instead.
|
1450 |
+
model_inputs = {"input_ids": input_ids.contiguous()}
|
1451 |
+
|
1452 |
+
model_inputs.update(
|
1453 |
+
{
|
1454 |
+
"position_ids": position_ids.contiguous(),
|
1455 |
+
"cache_position": cache_position,
|
1456 |
+
"past_key_values": past_key_values,
|
1457 |
+
"use_cache": kwargs.get("use_cache"),
|
1458 |
+
"attention_mask": attention_mask,
|
1459 |
+
}
|
1460 |
+
)
|
1461 |
+
return model_inputs
|
1462 |
+
|
1463 |
+
@staticmethod
|
1464 |
+
def _reorder_cache(past_key_values, beam_idx):
|
1465 |
+
reordered_past = ()
|
1466 |
+
for layer_past in past_key_values:
|
1467 |
+
reordered_past += (
|
1468 |
+
tuple(
|
1469 |
+
past_state.index_select(0, beam_idx.to(past_state.device))
|
1470 |
+
for past_state in layer_past
|
1471 |
+
),
|
1472 |
+
)
|
1473 |
+
return reordered_past
|
1474 |
+
|
1475 |
+
|
1476 |
+
ACT_TYPE = {
|
1477 |
+
'relu': nn.ReLU,
|
1478 |
+
'gelu': nn.GELU
|
1479 |
+
}
|
1480 |
+
|
1481 |
+
class Connector(nn.Module):
|
1482 |
+
def __init__(self, config=None):
|
1483 |
+
super().__init__()
|
1484 |
+
mlp_gelu_match = re.match(r'^mlp(\d+)x_gelu$', config.connector_type)
|
1485 |
+
act_type = config.connector_type.split('_')[-1]
|
1486 |
+
mlp_depth = int(mlp_gelu_match.group(1))
|
1487 |
+
modules = [nn.Linear(config.vision_hidden_size, config.hidden_size)]
|
1488 |
+
for _ in range(1, mlp_depth):
|
1489 |
+
modules.append(ACT_TYPE[act_type]())
|
1490 |
+
modules.append(nn.Linear(config.hidden_size, config.hidden_size))
|
1491 |
+
|
1492 |
+
self._connector = nn.Sequential(*modules)
|
1493 |
+
|
1494 |
+
def forward(self, x):
|
1495 |
+
return self._connector(x)
|
1496 |
+
|
1497 |
+
class VisionTower(nn.Module):
|
1498 |
+
def __init__(self, cfg, model_name_or_path = 'clip'):
|
1499 |
+
super().__init__()
|
1500 |
+
self._vision_tower = AutoModel.from_pretrained(cfg.model_name_or_path, config = cfg, trust_remote_code=True)
|
1501 |
+
self._image_processor = AutoImageProcessor.from_pretrained(cfg.model_name_or_path)
|
1502 |
+
self.config = cfg
|
1503 |
+
|
1504 |
+
|
1505 |
+
|
1506 |
+
def forward(self, x, **kwargs):
|
1507 |
+
image_features = self._vision_tower(x, output_hidden_states=True)
|
1508 |
+
image_features = image_features.hidden_states[kwargs.get('vision_feature_layer', -2)]
|
1509 |
+
|
1510 |
+
if kwargs.get('vision_feature_select_strategy', 'patch') == 'patch':
|
1511 |
+
image_features = image_features[:, 1:]
|
1512 |
+
elif kwargs.get('vision_feature_select_strategy', 'patch') == 'cls_patch':
|
1513 |
+
image_features = image_features
|
1514 |
+
else:
|
1515 |
+
raise ValueError(f"Unexpected select feature: {kwargs.get('vision_feature_select_strategy')}")
|
1516 |
+
|
1517 |
+
return image_features
|
1518 |
+
|
1519 |
+
|
1520 |
+
|
1521 |
+
@property
|
1522 |
+
def vision_tower(self):
|
1523 |
+
return self._vision_tower
|
1524 |
+
|
1525 |
+
@vision_tower.setter
|
1526 |
+
def vision_tower(self, vision_tower):
|
1527 |
+
self._vision_tower = vision_tower
|
1528 |
+
|
1529 |
+
def get_value_from_kwargs(kwargs, name):
|
1530 |
+
if name in kwargs:
|
1531 |
+
return kwargs.pop(name)
|
1532 |
+
else:
|
1533 |
+
return None
|
1534 |
+
|
1535 |
+
|
1536 |
+
|
1537 |
+
class TinyLlavaPreTrainedModel(PreTrainedModel):
|
1538 |
+
config_class = TinyLlavaConfig
|
1539 |
+
base_model_prefix = "model"
|
1540 |
+
supports_gradient_checkpointing = True
|
1541 |
+
_no_split_modules = ["LlavaVisionAttention"]
|
1542 |
+
_skip_keys_device_placement = "past_key_values"
|
1543 |
+
_supports_flash_attn_2 = True
|
1544 |
+
|
1545 |
+
def _init_weights(self, module):
|
1546 |
+
std = (
|
1547 |
+
self.config.initializer_range
|
1548 |
+
if hasattr(self.config, "initializer_range")
|
1549 |
+
else self.config.text_config.initializer_range
|
1550 |
+
)
|
1551 |
+
|
1552 |
+
if hasattr(module, "class_embedding"):
|
1553 |
+
module.class_embedding.data.normal_(mean=0.0, std=std)
|
1554 |
+
|
1555 |
+
if isinstance(module, (nn.Linear, nn.Conv2d)):
|
1556 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1557 |
+
if module.bias is not None:
|
1558 |
+
module.bias.data.zero_()
|
1559 |
+
elif isinstance(module, nn.Embedding):
|
1560 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
1561 |
+
if module.padding_idx is not None:
|
1562 |
+
module.weight.data[module.padding_idx].zero_()
|
1563 |
+
|
1564 |
+
@property
|
1565 |
+
def _supports_sdpa(self):
|
1566 |
+
return self.language_model._supports_sdpa
|
1567 |
+
|
1568 |
+
|
1569 |
+
class TinyLlavaForConditionalGeneration(TinyLlavaPreTrainedModel):
|
1570 |
+
def __init__(self, config: TinyLlavaConfig):
|
1571 |
+
|
1572 |
+
super().__init__(config)
|
1573 |
+
|
1574 |
+
self.language_model = OpenELMForCausalLM(config.text_config)
|
1575 |
+
self.vision_tower = VisionTower(config.vision_config, config.vision_model_name_or_path)
|
1576 |
+
self.connector = Connector(config)
|
1577 |
+
self.post_init()
|
1578 |
+
|
1579 |
+
|
1580 |
+
def get_input_embeddings(self):
|
1581 |
+
return self.language_model.get_input_embeddings()
|
1582 |
+
|
1583 |
+
def set_input_embeddings(self, value):
|
1584 |
+
self.language_model.set_input_embeddings(value)
|
1585 |
+
|
1586 |
+
def get_output_embeddings(self):
|
1587 |
+
return self.language_model.get_output_embeddings()
|
1588 |
+
|
1589 |
+
def set_output_embeddings(self, new_embeddings):
|
1590 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
1591 |
+
|
1592 |
+
def set_decoder(self, decoder):
|
1593 |
+
self.language_model.set_decoder(decoder)
|
1594 |
+
|
1595 |
+
def get_decoder(self):
|
1596 |
+
return self.language_model.get_decoder()
|
1597 |
+
|
1598 |
+
def tie_weights(self):
|
1599 |
+
return self.language_model.tie_weights()
|
1600 |
+
|
1601 |
+
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
|
1602 |
+
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
1603 |
+
# update vocab size
|
1604 |
+
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
1605 |
+
self.config.vocab_size = model_embeds.num_embeddings
|
1606 |
+
self.vocab_size = model_embeds.num_embeddings
|
1607 |
+
return model_embeds
|
1608 |
+
|
1609 |
+
|
1610 |
+
def forward(
|
1611 |
+
self,
|
1612 |
+
input_ids: torch.LongTensor = None,
|
1613 |
+
attention_mask: Optional[torch.Tensor] = None,
|
1614 |
+
position_ids: Optional[torch.LongTensor] = None,
|
1615 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
1616 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
1617 |
+
labels: Optional[torch.LongTensor] = None,
|
1618 |
+
use_cache: Optional[bool] = None,
|
1619 |
+
output_attentions: Optional[bool] = None,
|
1620 |
+
output_hidden_states: Optional[bool] = None,
|
1621 |
+
images: Optional[torch.FloatTensor] = None,
|
1622 |
+
image_sizes: Optional[List[List[int]]] = None,
|
1623 |
+
return_dict: Optional[bool] = None,
|
1624 |
+
) -> Union[Tuple, CausalLMOutputWithPast]:
|
1625 |
+
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
1626 |
+
if inputs_embeds is None:
|
1627 |
+
(
|
1628 |
+
input_ids,
|
1629 |
+
position_ids,
|
1630 |
+
attention_mask,
|
1631 |
+
past_key_values,
|
1632 |
+
inputs_embeds,
|
1633 |
+
labels
|
1634 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
1635 |
+
input_ids,
|
1636 |
+
position_ids,
|
1637 |
+
attention_mask,
|
1638 |
+
past_key_values,
|
1639 |
+
labels,
|
1640 |
+
images,
|
1641 |
+
image_sizes
|
1642 |
+
)
|
1643 |
+
return self.language_model.forward(
|
1644 |
+
input_ids=input_ids,
|
1645 |
+
attention_mask=attention_mask,
|
1646 |
+
position_ids=position_ids,
|
1647 |
+
past_key_values=past_key_values,
|
1648 |
+
inputs_embeds=inputs_embeds,
|
1649 |
+
labels=labels,
|
1650 |
+
use_cache=use_cache,
|
1651 |
+
output_attentions=output_attentions,
|
1652 |
+
output_hidden_states=output_hidden_states,
|
1653 |
+
return_dict=return_dict
|
1654 |
+
)
|
1655 |
+
|
1656 |
+
@torch.no_grad()
|
1657 |
+
def generate(
|
1658 |
+
self,
|
1659 |
+
inputs: Optional[torch.Tensor] = None,
|
1660 |
+
images: Optional[torch.Tensor] = None,
|
1661 |
+
image_sizes: Optional[torch.Tensor] = None,
|
1662 |
+
**kwargs,
|
1663 |
+
) -> Union[GenerateOutput, torch.LongTensor]:
|
1664 |
+
position_ids = kwargs.pop("position_ids", None)
|
1665 |
+
attention_mask = kwargs.pop("attention_mask", None)
|
1666 |
+
if "inputs_embeds" in kwargs:
|
1667 |
+
raise NotImplementedError("`inputs_embeds` is not supported")
|
1668 |
+
|
1669 |
+
if images is not None:
|
1670 |
+
(
|
1671 |
+
inputs,
|
1672 |
+
position_ids,
|
1673 |
+
attention_mask,
|
1674 |
+
_,
|
1675 |
+
inputs_embeds,
|
1676 |
+
_
|
1677 |
+
) = self.prepare_inputs_labels_for_multimodal(
|
1678 |
+
inputs,
|
1679 |
+
position_ids,
|
1680 |
+
attention_mask,
|
1681 |
+
None,
|
1682 |
+
None,
|
1683 |
+
images,
|
1684 |
+
image_sizes=image_sizes
|
1685 |
+
)
|
1686 |
+
else:
|
1687 |
+
inputs_embeds = self.language_model.get_input_embeddings()(inputs)
|
1688 |
+
|
1689 |
+
return self.language_model.generate(
|
1690 |
+
position_ids=position_ids,
|
1691 |
+
attention_mask=attention_mask,
|
1692 |
+
inputs_embeds=inputs_embeds,
|
1693 |
+
**kwargs
|
1694 |
+
)
|
1695 |
+
|
1696 |
+
def encode_images(self, images):
|
1697 |
+
kwargs = {}
|
1698 |
+
kwargs['vision_feature_layer'] = self.config.vision_feature_layer
|
1699 |
+
kwargs['vision_feature_select_strategy'] = self.config.vision_feature_select_strategy
|
1700 |
+
images = images.to(device=self.device, dtype=self.dtype)
|
1701 |
+
image_features = self.vision_tower(images, **kwargs)
|
1702 |
+
image_features = self.connector(image_features)
|
1703 |
+
return image_features
|
1704 |
+
|
1705 |
+
|
1706 |
+
|
1707 |
+
def prepare_inputs_for_generation(self, input_ids, past_key_values=None,
|
1708 |
+
inputs_embeds=None, **kwargs):
|
1709 |
+
images = kwargs.pop("images", None)
|
1710 |
+
image_sizes = kwargs.pop("image_sizes", None)
|
1711 |
+
inputs = self.language_model.prepare_inputs_for_generation(
|
1712 |
+
input_ids, past_key_values=past_key_values, inputs_embeds=inputs_embeds, **kwargs
|
1713 |
+
)
|
1714 |
+
if images is not None:
|
1715 |
+
inputs['images'] = images
|
1716 |
+
if image_sizes is not None:
|
1717 |
+
inputs['image_sizes'] = image_sizes
|
1718 |
+
return inputs
|
1719 |
+
|
1720 |
+
def prepare_inputs_labels_for_multimodal(
|
1721 |
+
self, input_ids, position_ids, attention_mask, past_key_values, labels,
|
1722 |
+
images, image_sizes=None
|
1723 |
+
):
|
1724 |
+
vision_tower = self.vision_tower
|
1725 |
+
if vision_tower is None or images is None or input_ids.shape[1] == 1:
|
1726 |
+
return input_ids, position_ids, attention_mask, past_key_values, None, labels
|
1727 |
+
|
1728 |
+
|
1729 |
+
image_features = self.encode_images(images)
|
1730 |
+
|
1731 |
+
# TODO: image start / end is not implemented here to support pretraining.
|
1732 |
+
if getattr(self.config, 'tune_mm_mlp_adapter', False):
|
1733 |
+
raise NotImplementedError
|
1734 |
+
|
1735 |
+
# Let's just add dummy tensors if they do not exist,
|
1736 |
+
# it is a headache to deal with None all the time.
|
1737 |
+
# But it is not ideal, and if you have a better idea,
|
1738 |
+
# please open an issue / submit a PR, thanks.
|
1739 |
+
_labels = labels
|
1740 |
+
_position_ids = position_ids
|
1741 |
+
_attention_mask = attention_mask
|
1742 |
+
if attention_mask is None:
|
1743 |
+
attention_mask = torch.ones_like(input_ids, dtype=torch.bool)
|
1744 |
+
else:
|
1745 |
+
attention_mask = attention_mask.bool()
|
1746 |
+
if position_ids is None:
|
1747 |
+
position_ids = torch.arange(0, input_ids.shape[1], dtype=torch.long, device=input_ids.device)
|
1748 |
+
if labels is None:
|
1749 |
+
labels = torch.full_like(input_ids, IGNORE_INDEX)
|
1750 |
+
|
1751 |
+
# remove the padding using attention_mask -- FIXME
|
1752 |
+
_input_ids = input_ids
|
1753 |
+
input_ids = [cur_input_ids[cur_attention_mask] for cur_input_ids, cur_attention_mask in zip(input_ids, attention_mask)]
|
1754 |
+
labels = [cur_labels[cur_attention_mask] for cur_labels, cur_attention_mask in zip(labels, attention_mask)]
|
1755 |
+
|
1756 |
+
new_input_embeds = []
|
1757 |
+
new_labels = []
|
1758 |
+
cur_image_idx = 0
|
1759 |
+
for batch_idx, cur_input_ids in enumerate(input_ids):
|
1760 |
+
num_images = (cur_input_ids == IMAGE_TOKEN_INDEX).sum()
|
1761 |
+
if num_images == 0:
|
1762 |
+
cur_image_features = image_features[cur_image_idx]
|
1763 |
+
cur_input_embeds_1 = self.language_model.get_input_embeddings()(cur_input_ids)
|
1764 |
+
cur_input_embeds = torch.cat([cur_input_embeds_1, cur_image_features[0:0]], dim=0)
|
1765 |
+
new_input_embeds.append(cur_input_embeds)
|
1766 |
+
new_labels.append(labels[batch_idx])
|
1767 |
+
cur_image_idx += 1
|
1768 |
+
continue
|
1769 |
+
|
1770 |
+
image_token_indices = [-1] + torch.where(cur_input_ids == IMAGE_TOKEN_INDEX)[0].tolist() + [cur_input_ids.shape[0]]
|
1771 |
+
cur_input_ids_noim = []
|
1772 |
+
cur_labels = labels[batch_idx]
|
1773 |
+
cur_labels_noim = []
|
1774 |
+
for i in range(len(image_token_indices) - 1):
|
1775 |
+
cur_input_ids_noim.append(cur_input_ids[image_token_indices[i]+1:image_token_indices[i+1]])
|
1776 |
+
cur_labels_noim.append(cur_labels[image_token_indices[i]+1:image_token_indices[i+1]])
|
1777 |
+
split_sizes = [x.shape[0] for x in cur_labels_noim]
|
1778 |
+
cur_input_embeds = self.language_model.get_input_embeddings()(torch.cat(cur_input_ids_noim))
|
1779 |
+
cur_input_embeds_no_im = torch.split(cur_input_embeds, split_sizes, dim=0)
|
1780 |
+
cur_new_input_embeds = []
|
1781 |
+
cur_new_labels = []
|
1782 |
+
|
1783 |
+
for i in range(num_images + 1):
|
1784 |
+
cur_new_input_embeds.append(cur_input_embeds_no_im[i])
|
1785 |
+
cur_new_labels.append(cur_labels_noim[i])
|
1786 |
+
if i < num_images:
|
1787 |
+
cur_image_features = image_features[cur_image_idx]
|
1788 |
+
cur_image_idx += 1
|
1789 |
+
cur_new_input_embeds.append(cur_image_features)
|
1790 |
+
cur_new_labels.append(torch.full((cur_image_features.shape[0],), IGNORE_INDEX, device=cur_labels.device, dtype=cur_labels.dtype))
|
1791 |
+
|
1792 |
+
cur_new_input_embeds = [x.to(self.device) for x in cur_new_input_embeds]
|
1793 |
+
|
1794 |
+
cur_new_input_embeds = torch.cat(cur_new_input_embeds)
|
1795 |
+
cur_new_labels = torch.cat(cur_new_labels)
|
1796 |
+
|
1797 |
+
new_input_embeds.append(cur_new_input_embeds)
|
1798 |
+
new_labels.append(cur_new_labels)
|
1799 |
+
|
1800 |
+
# Truncate sequences to max length as image embeddings can make the sequence longer
|
1801 |
+
tokenizer_model_max_length = getattr(self.config, 'tokenizer_model_max_length', None)
|
1802 |
+
if tokenizer_model_max_length is not None:
|
1803 |
+
new_input_embeds = [x[:tokenizer_model_max_length] for x in new_input_embeds]
|
1804 |
+
new_labels = [x[:tokenizer_model_max_length] for x in new_labels]
|
1805 |
+
|
1806 |
+
# Combine them
|
1807 |
+
max_len = max(x.shape[0] for x in new_input_embeds)
|
1808 |
+
batch_size = len(new_input_embeds)
|
1809 |
+
|
1810 |
+
new_input_embeds_padded = []
|
1811 |
+
new_labels_padded = torch.full((batch_size, max_len), IGNORE_INDEX, dtype=new_labels[0].dtype, device=new_labels[0].device)
|
1812 |
+
attention_mask = torch.zeros((batch_size, max_len), dtype=attention_mask.dtype, device=attention_mask.device)
|
1813 |
+
position_ids = torch.zeros((batch_size, max_len), dtype=position_ids.dtype, device=position_ids.device)
|
1814 |
+
|
1815 |
+
for i, (cur_new_embed, cur_new_labels) in enumerate(zip(new_input_embeds, new_labels)):
|
1816 |
+
cur_len = cur_new_embed.shape[0]
|
1817 |
+
if getattr(self.config, 'tokenizer_padding_side', 'right') == "left":
|
1818 |
+
new_input_embeds_padded.append(torch.cat((
|
1819 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device),
|
1820 |
+
cur_new_embed
|
1821 |
+
), dim=0))
|
1822 |
+
if cur_len > 0:
|
1823 |
+
new_labels_padded[i, -cur_len:] = cur_new_labels
|
1824 |
+
attention_mask[i, -cur_len:] = True
|
1825 |
+
position_ids[i, -cur_len:] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
1826 |
+
else:
|
1827 |
+
new_input_embeds_padded.append(torch.cat((
|
1828 |
+
cur_new_embed,
|
1829 |
+
torch.zeros((max_len - cur_len, cur_new_embed.shape[1]), dtype=cur_new_embed.dtype, device=cur_new_embed.device)
|
1830 |
+
), dim=0))
|
1831 |
+
if cur_len > 0:
|
1832 |
+
new_labels_padded[i, :cur_len] = cur_new_labels
|
1833 |
+
attention_mask[i, :cur_len] = True
|
1834 |
+
position_ids[i, :cur_len] = torch.arange(0, cur_len, dtype=position_ids.dtype, device=position_ids.device)
|
1835 |
+
|
1836 |
+
new_input_embeds = torch.stack(new_input_embeds_padded, dim=0)
|
1837 |
+
|
1838 |
+
if _labels is None:
|
1839 |
+
new_labels = None
|
1840 |
+
else:
|
1841 |
+
new_labels = new_labels_padded
|
1842 |
+
|
1843 |
+
if _attention_mask is None:
|
1844 |
+
attention_mask = None
|
1845 |
+
else:
|
1846 |
+
attention_mask = attention_mask.to(dtype=_attention_mask.dtype)
|
1847 |
+
|
1848 |
+
if _position_ids is None:
|
1849 |
+
position_ids = None
|
1850 |
+
|
1851 |
+
return None, position_ids, attention_mask, past_key_values, new_input_embeds, new_labels
|
1852 |
+
|
1853 |
+
def chat(
|
1854 |
+
self,
|
1855 |
+
prompt: str,
|
1856 |
+
tokenizer = None,
|
1857 |
+
image: str = None,
|
1858 |
+
max_new_tokens: int = 512,
|
1859 |
+
num_beams = 1,
|
1860 |
+
top_p=None,
|
1861 |
+
temperature=0
|
1862 |
+
):
|
1863 |
+
image_processor = self.vision_tower._image_processor
|
1864 |
+
|
1865 |
+
if image is not None:
|
1866 |
+
prompt = DEFAULT_IMAGE_TOKEN + '\n' + prompt
|
1867 |
+
conv = conv_phi_v0.copy()
|
1868 |
+
conv.append_message(conv.roles[0], prompt)
|
1869 |
+
conv.append_message(conv.roles[1], None)
|
1870 |
+
prompt = conv.get_prompt()
|
1871 |
+
if image is not None:
|
1872 |
+
image = load_image(image)
|
1873 |
+
image_tensor = process_images(image, image_processor, self.config).to(self.device)
|
1874 |
+
|
1875 |
+
input_ids = (
|
1876 |
+
tokenizer_image_token(prompt, tokenizer, IMAGE_TOKEN_INDEX, return_tensors="pt")
|
1877 |
+
.unsqueeze(0).to(self.device)
|
1878 |
+
)
|
1879 |
+
# Generate
|
1880 |
+
stime = time.time()
|
1881 |
+
|
1882 |
+
with torch.inference_mode():
|
1883 |
+
output_ids = self.generate(
|
1884 |
+
input_ids,
|
1885 |
+
images=image_tensor,
|
1886 |
+
do_sample=True if temperature > 0 else False,
|
1887 |
+
temperature=temperature,
|
1888 |
+
top_p=top_p,
|
1889 |
+
num_beams=num_beams,
|
1890 |
+
pad_token_id=tokenizer.pad_token_id,
|
1891 |
+
max_new_tokens=max_new_tokens,
|
1892 |
+
use_cache=True,
|
1893 |
+
# stopping_criteria=[stopping_criteria],
|
1894 |
+
)
|
1895 |
+
|
1896 |
+
# print('inference over')
|
1897 |
+
generation_time = time.time() - stime
|
1898 |
+
outputs = tokenizer.batch_decode(
|
1899 |
+
output_ids, skip_special_tokens=True
|
1900 |
+
)[0]
|
1901 |
+
|
1902 |
+
outputs = outputs.strip()
|
1903 |
+
|
1904 |
+
return outputs, generation_time
|
1905 |
+
|
1906 |
+
|
1907 |
+
|
1908 |
+
|
1909 |
+
|
1910 |
+
AutoConfig.register("tinyllava", TinyLlavaConfig)
|
1911 |
+
AutoModelForCausalLM.register(TinyLlavaConfig, TinyLlavaForConditionalGeneration)
|