--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - bigcgen metrics: - wer model-index: - name: whisper-medium-bigcgen-combined-5hrs-62 results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: bigcgen type: bigcgen metrics: - name: Wer type: wer value: 0.5565156468939748 --- # whisper-medium-bigcgen-combined-5hrs-62 This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the bigcgen dataset. It achieves the following results on the evaluation set: - Loss: 0.7209 - Wer: 0.5565 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 62 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 1.0959 | 0.6079 | 200 | 0.9655 | 0.6610 | | 0.6562 | 1.2158 | 400 | 0.8052 | 0.5699 | | 0.6063 | 1.8237 | 600 | 0.7209 | 0.5565 | | 0.402 | 2.4316 | 800 | 0.7347 | 0.5566 | | 0.3066 | 3.0395 | 1000 | 0.7320 | 0.5467 | | 0.2262 | 3.6474 | 1200 | 0.7329 | 0.5896 | | 0.117 | 4.2553 | 1400 | 0.7819 | 0.5211 | ### Framework versions - Transformers 4.53.0.dev0 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.0