--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - swagen metrics: - wer model-index: - name: whisper-medium-swagen-combined-30hrs-model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: swagen type: swagen metrics: - name: Wer type: wer value: 0.2234172077922078 --- # whisper-medium-swagen-combined-30hrs-model This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the swagen dataset. It achieves the following results on the evaluation set: - Loss: 0.3610 - Wer: 0.2234 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 30.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 2.7508 | 0.0828 | 200 | 0.8134 | 0.4877 | | 1.8748 | 0.1656 | 400 | 0.6291 | 0.3898 | | 1.6214 | 0.2484 | 600 | 0.5560 | 0.3431 | | 1.559 | 0.3312 | 800 | 0.4968 | 0.2953 | | 1.3616 | 0.4140 | 1000 | 0.4720 | 0.2872 | | 1.3078 | 0.4967 | 1200 | 0.4577 | 0.2978 | | 1.2579 | 0.5795 | 1400 | 0.4218 | 0.2758 | | 1.214 | 0.6623 | 1600 | 0.4156 | 0.2654 | | 1.0719 | 0.7451 | 1800 | 0.4005 | 0.2315 | | 1.0432 | 0.8279 | 2000 | 0.3864 | 0.2433 | | 0.9825 | 0.9107 | 2200 | 0.3743 | 0.2207 | | 1.0952 | 0.9935 | 2400 | 0.3610 | 0.2234 | | 0.6001 | 1.0766 | 2600 | 0.3888 | 0.2423 | | 0.5491 | 1.1594 | 2800 | 0.3730 | 0.2265 | | 0.6732 | 1.2422 | 3000 | 0.3702 | 0.2201 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0