--- library_name: transformers license: apache-2.0 base_model: openai/whisper-medium tags: - generated_from_trainer datasets: - toigen metrics: - wer model-index: - name: whisper-medium-toigen-balanced-model results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: toigen type: toigen metrics: - name: Wer type: wer value: 0.48498635122838946 --- # whisper-medium-toigen-balanced-model This model is a fine-tuned version of [openai/whisper-medium](https://huggingface.co/openai/whisper-medium) on the toigen dataset. It achieves the following results on the evaluation set: - Loss: 0.7784 - Wer: 0.4850 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:------:| | 3.415 | 1.7495 | 200 | 0.8853 | 0.6051 | | 1.4267 | 3.5054 | 400 | 0.7784 | 0.4850 | | 0.4437 | 5.2614 | 600 | 0.7838 | 0.5105 | | 0.2779 | 7.0174 | 800 | 0.8309 | 0.4572 | | 0.1379 | 8.7669 | 1000 | 0.8748 | 0.4604 | ### Framework versions - Transformers 4.47.1 - Pytorch 2.5.1+cu124 - Datasets 3.2.0 - Tokenizers 0.21.0